Suppr超能文献

通过分子动力学对三种耐离子液体纤维素酶的比较

Comparison of three ionic liquid-tolerant cellulases by molecular dynamics.

作者信息

Jaeger Vance, Burney Patrick, Pfaendtner Jim

机构信息

Department of Chemical Engineering, University of Washington, Seattle, Washington.

Department of Chemical Engineering, University of Washington, Seattle, Washington.

出版信息

Biophys J. 2015 Feb 17;108(4):880-892. doi: 10.1016/j.bpj.2014.12.043.

Abstract

We have employed molecular dynamics to investigate the differences in ionic liquid tolerance among three distinct family 5 cellulases from Trichoderma viride, Thermogata maritima, and Pyrococcus horikoshii. Simulations of the three cellulases were conducted at a range of temperatures in various binary mixtures of the ionic liquid 1-ethyl-3-methyl-imidazolium acetate with water. Our analysis demonstrates that the effects of ionic liquids on the enzymes vary in each individual case from local structural disturbances to loss of much of one of the enzyme's secondary structure. Enzymes with more negatively charged surfaces tend to resist destabilization by ionic liquids. Specific and unique structural changes in the enzymes are induced by the presence of ionic liquids. Disruption of the secondary structure, changes in dynamical motion, and local changes in the binding pocket are observed in less tolerant enzymes. Ionic-liquid-induced denaturation of one of the enzymes is indicated over the 500 ns timescale. In contrast, the most tolerant cellulase behaves similarly in water and in ionic-liquid-containing mixtures. Unlike the heuristic approaches that attempt to predict enzyme stability using macroscopic properties, molecular dynamics allows us to predict specific atomic-level structural and dynamical changes in an enzyme's behavior induced by ionic liquids and other mixed solvents. Using these insights, we propose specific experimentally testable hypotheses regarding the origin of activity loss for each of the systems investigated in this study.

摘要

我们运用分子动力学方法,研究了来自绿色木霉、嗜热栖热菌和嗜热栖热菌的三种不同的5家族纤维素酶在离子液体耐受性方面的差异。在离子液体1-乙基-3-甲基咪唑醋酸盐与水的各种二元混合物中,于一系列温度下对这三种纤维素酶进行了模拟。我们的分析表明,离子液体对酶的影响在每种情况下各不相同,从局部结构紊乱到酶的二级结构之一大部分丧失。表面带更多负电荷的酶往往能抵抗离子液体引起的不稳定。离子液体的存在会诱导酶发生特定且独特的结构变化。在耐受性较差的酶中,观察到二级结构的破坏、动力学运动的变化以及结合口袋的局部变化。在500纳秒时间尺度上,表明其中一种酶发生了离子液体诱导的变性。相比之下,耐受性最强的纤维素酶在水和含离子液体的混合物中的行为相似。与试图利用宏观性质预测酶稳定性的启发式方法不同,分子动力学使我们能够预测离子液体和其他混合溶剂诱导的酶行为中特定的原子水平结构和动力学变化。基于这些见解,我们针对本研究中所研究的每个系统的活性丧失起源,提出了具体的、可通过实验检验的假设。

相似文献

1
Comparison of three ionic liquid-tolerant cellulases by molecular dynamics.
Biophys J. 2015 Feb 17;108(4):880-892. doi: 10.1016/j.bpj.2014.12.043.
2
Structure, dynamics, and activity of xylanase solvated in binary mixtures of ionic liquid and water.
ACS Chem Biol. 2013;8(6):1179-86. doi: 10.1021/cb3006837. Epub 2013 Apr 5.
3
Advances in improving the performance of cellulase in ionic liquids for lignocellulose biorefinery.
Bioresour Technol. 2016 Jan;200:961-70. doi: 10.1016/j.biortech.2015.10.031. Epub 2015 Oct 22.
4
Crystallization and preliminary X-ray analysis of endoglucanase from Pyrococcus horikoshii.
Acta Crystallogr Sect F Struct Biol Cryst Commun. 2008 Dec 1;64(Pt 12):1169-71. doi: 10.1107/S1744309108036919. Epub 2008 Nov 28.
5
Cellulose hydrolysis by immobilized Trichoderma reesei cellulase.
Biotechnol Lett. 2010 Jan;32(1):103-6. doi: 10.1007/s10529-009-0119-x.
6
Molecular dynamics simulations of cellulase homologs in aqueous 1-ethyl-3-methylimidazolium chloride.
J Biomol Struct Dyn. 2017 Jul;35(9):1990-2002. doi: 10.1080/07391102.2016.1204364. Epub 2016 Jul 8.
8
Improved activity of a thermophilic cellulase, Cel5A, from Thermotoga maritima on ionic liquid pretreated switchgrass.
PLoS One. 2013 Nov 14;8(11):e79725. doi: 10.1371/journal.pone.0079725. eCollection 2013.
9
Engineering ionic liquid-tolerant cellulases for biofuels production.
Protein Eng Des Sel. 2016 Apr;29(4):117-22. doi: 10.1093/protein/gzv066. Epub 2016 Jan 26.
10
Enhanced stability of the model mini-protein in amino acid ionic liquids and their aqueous solutions.
J Comput Chem. 2015 Oct 15;36(27):2044-51. doi: 10.1002/jcc.24042. Epub 2015 Aug 6.

引用本文的文献

2
Enhanced activity of hyperthermostable Pyrococcus horikoshii endoglucanase in superbase ionic liquids.
Biotechnol Lett. 2022 Aug;44(8):961-974. doi: 10.1007/s10529-022-03268-5. Epub 2022 Jun 28.
3
Modifying Surface Charges of a Thermophilic Laccase Toward Improving Activity and Stability in Ionic Liquid.
Front Bioeng Biotechnol. 2022 Jun 8;10:880795. doi: 10.3389/fbioe.2022.880795. eCollection 2022.
4
Structure and dynamics of ionic liquid tolerant hyperthermophilic endoglucanase Cel12A from .
RSC Adv. 2020 Feb 24;10(13):7933-7947. doi: 10.1039/c9ra09612d. eCollection 2020 Feb 18.
5
Aqueous ionic liquids redistribute local enzyme stability via long-range perturbation pathways.
Comput Struct Biotechnol J. 2021 Jul 8;19:4248-4264. doi: 10.1016/j.csbj.2021.07.001. eCollection 2021.
6
Use of Ionic Liquids in Protein and DNA Chemistry.
Front Chem. 2020 Dec 23;8:598662. doi: 10.3389/fchem.2020.598662. eCollection 2020.
7
An overview of biomass conversion: exploring new opportunities.
PeerJ. 2020 Jul 22;8:e9586. doi: 10.7717/peerj.9586. eCollection 2020.
8
Engineering Robust Cellulases for Tailored Lignocellulosic Degradation Cocktails.
Int J Mol Sci. 2020 Feb 26;21(5):1589. doi: 10.3390/ijms21051589.
10
Probing the Effect of Glucose on the Activity and Stability of β-Glucosidase: An All-Atom Molecular Dynamics Simulation Investigation.
ACS Omega. 2019 Jun 27;4(6):11189-11196. doi: 10.1021/acsomega.9b00509. eCollection 2019 Jun 30.

本文引用的文献

1
GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation.
J Chem Theory Comput. 2008 Mar;4(3):435-47. doi: 10.1021/ct700301q.
2
PROPKA3: Consistent Treatment of Internal and Surface Residues in Empirical pKa Predictions.
J Chem Theory Comput. 2011 Feb 8;7(2):525-37. doi: 10.1021/ct100578z. Epub 2011 Jan 6.
6
Protein destabilisation in ionic liquids: the role of preferential interactions in denaturation.
Phys Chem Chem Phys. 2013 Dec 7;15(45):19632-43. doi: 10.1039/c3cp53395f. Epub 2013 Oct 17.
8
Mediating electrostatic binding of 1-butyl-3-methylimidazolium chloride to enzyme surfaces improves conformational stability.
J Phys Chem B. 2013 Aug 1;117(30):8977-86. doi: 10.1021/jp404760w. Epub 2013 Jul 19.
9
Stabilization of enzymes in ionic liquids via modification of enzyme charge.
Biotechnol Bioeng. 2013 Sep;110(9):2352-60. doi: 10.1002/bit.24910. Epub 2013 Apr 22.
10
Structure, dynamics, and activity of xylanase solvated in binary mixtures of ionic liquid and water.
ACS Chem Biol. 2013;8(6):1179-86. doi: 10.1021/cb3006837. Epub 2013 Apr 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验