Suppr超能文献

布鲁赫蛋白和突触结合蛋白协同作用,驱动快速谷氨酸释放和活性区分化。

Bruchpilot and Synaptotagmin collaborate to drive rapid glutamate release and active zone differentiation.

作者信息

Paul Mila M, Pauli Martin, Ehmann Nadine, Hallermann Stefan, Sauer Markus, Kittel Robert J, Heckmann Manfred

机构信息

Department of Neurophysiology, Institute of Physiology, Julius-Maximilians-University Würzburg Würzburg, Germany.

Carl-Ludwig-Institute for Physiology, University of Leipzig Leipzig, Germany.

出版信息

Front Cell Neurosci. 2015 Feb 5;9:29. doi: 10.3389/fncel.2015.00029. eCollection 2015.

Abstract

The active zone (AZ) protein Bruchpilot (Brp) is essential for rapid glutamate release at Drosophila melanogaster neuromuscular junctions (NMJs). Quantal time course and measurements of action potential-waveform suggest that presynaptic fusion mechanisms are altered in brp null mutants (brp(69) ). This could account for their increased evoked excitatory postsynaptic current (EPSC) delay and rise time (by about 1 ms). To test the mechanism of release protraction at brp(69) AZs, we performed knock-down of Synaptotagmin-1 (Syt) via RNAi (syt(KD) ) in wildtype (wt), brp(69) and rab3 null mutants (rab3(rup) ), where Brp is concentrated at a small number of AZs. At wt and rab3(rup) synapses, syt(KD) lowered EPSC amplitude while increasing rise time and delay, consistent with the role of Syt as a release sensor. In contrast, syt(KD) did not alter EPSC amplitude at brp(69) synapses, but shortened delay and rise time. In fact, following syt(KD) , these kinetic properties were strikingly similar in wt and brp(69) , which supports the notion that Syt protracts release at brp(69) synapses. To gain insight into this surprising role of Syt at brp(69) AZs, we analyzed the structural and functional differentiation of synaptic boutons at the NMJ. At 'tonic' type Ib motor neurons, distal boutons contain more AZs, more Brp proteins per AZ and show elevated and accelerated glutamate release compared to proximal boutons. The functional differentiation between proximal and distal boutons is Brp-dependent and reduced after syt(KD) . Notably, syt(KD) boutons are smaller, contain fewer Brp positive AZs and these are of similar number in proximal and distal boutons. In addition, super-resolution imaging via dSTORM revealed that syt(KD) increases the number and alters the spatial distribution of Brp molecules at AZs, while the gradient of Brp proteins per AZ is diminished. In summary, these data demonstrate that normal structural and functional differentiation of Drosophila AZs requires concerted action of Brp and Syt.

摘要

活性区(AZ)蛋白bruchpilot(Brp)对于黑腹果蝇神经肌肉接头(NMJ)处谷氨酸的快速释放至关重要。量子时间进程和动作电位波形测量表明,在brp基因敲除突变体(brp(69))中,突触前融合机制发生了改变。这可能解释了它们诱发的兴奋性突触后电流(EPSC)延迟和上升时间增加(约1毫秒)的原因。为了测试brp(69)活性区释放延长的机制,我们通过RNA干扰(syt(KD))在野生型(wt)、brp(69)和rab3基因敲除突变体(rab3(rup))中敲低突触结合蛋白-1(Syt),在rab3(rup)中Brp集中在少数活性区。在野生型和rab3(rup)突触中,syt(KD)降低了EPSC幅度,同时增加了上升时间和延迟,这与Syt作为释放传感器的作用一致。相比之下,syt(KD)在brp(69)突触中并未改变EPSC幅度,但缩短了延迟和上升时间。事实上,在syt(KD)之后,野生型和brp(69)的这些动力学特性惊人地相似,这支持了Syt在brp(69)突触中延长释放的观点。为了深入了解Syt在brp(69)活性区的这一惊人作用,我们分析了神经肌肉接头处突触小体的结构和功能分化。在“紧张性”Ib型运动神经元中,远端突触小体比近端突触小体含有更多的活性区、每个活性区含有更多的Brp蛋白,并且谷氨酸释放升高且加速。近端和远端突触小体之间的功能分化依赖于Brp,在syt(KD)后减弱。值得注意的是,syt(KD)突触小体较小,含有较少的Brp阳性活性区,并且近端和远端突触小体中的数量相似。此外,通过直接随机光学重建显微镜(dSTORM)进行的超分辨率成像显示,syt(KD)增加了活性区Brp分子的数量并改变了其空间分布,而每个活性区Brp蛋白的梯度减小。总之,这些数据表明果蝇活性区正常的结构和功能分化需要Brp和Syt的协同作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73a1/4318344/954e2a948de0/fncel-09-00029-g001.jpg

相似文献

1
Bruchpilot and Synaptotagmin collaborate to drive rapid glutamate release and active zone differentiation.
Front Cell Neurosci. 2015 Feb 5;9:29. doi: 10.3389/fncel.2015.00029. eCollection 2015.
2
Structural Remodeling of Active Zones Is Associated with Synaptic Homeostasis.
J Neurosci. 2020 Apr 1;40(14):2817-2827. doi: 10.1523/JNEUROSCI.2002-19.2020. Epub 2020 Mar 2.
4
Molecular mechanisms of COMPLEXIN fusion clamp function in synaptic exocytosis revealed in a new Drosophila mutant.
Mol Cell Neurosci. 2013 Sep;56:244-54. doi: 10.1016/j.mcn.2013.06.002. Epub 2013 Jun 11.
5
Active zone compaction correlates with presynaptic homeostatic potentiation.
Cell Rep. 2021 Oct 5;37(1):109770. doi: 10.1016/j.celrep.2021.109770.
6
Rab3-GEF Controls Active Zone Development at the Drosophila Neuromuscular Junction.
eNeuro. 2016 Mar 12;3(2). doi: 10.1523/ENEURO.0031-16.2016. eCollection 2016 Mar-Apr.
8
A Syd-1 homologue regulates pre- and postsynaptic maturation in Drosophila.
J Cell Biol. 2010 Feb 22;188(4):565-79. doi: 10.1083/jcb.200908055.
9
10
Maturation of active zone assembly by Drosophila Bruchpilot.
J Cell Biol. 2009 Jul 13;186(1):129-45. doi: 10.1083/jcb.200812150.

引用本文的文献

1
A Drosophila computational brain model reveals sensorimotor processing.
Nature. 2024 Oct;634(8032):210-219. doi: 10.1038/s41586-024-07763-9. Epub 2024 Oct 2.
2
Neto proteins differentially modulate the gating properties of NMJ glutamate receptors.
bioRxiv. 2024 Apr 26:2024.04.22.590603. doi: 10.1101/2024.04.22.590603.
3
Nanoscaled RIM clustering at presynaptic active zones revealed by endogenous tagging.
Life Sci Alliance. 2023 Sep 11;6(12). doi: 10.26508/lsa.202302021. Print 2023 Dec.
4
Bruchpiloting synaptic connections: Egfr in autophagy-mediated neuronal circuit development.
Autophagy. 2023 Jul;19(7):1899-1900. doi: 10.1080/15548627.2023.2217015. Epub 2023 May 27.
6
Single-Molecule Localization Microscopy of Presynaptic Active Zones in after Rapid Cryofixation.
Int J Mol Sci. 2023 Jan 21;24(3):2128. doi: 10.3390/ijms24032128.
7
Endogenous tagging of Unc-13 reveals nanoscale reorganization at active zones during presynaptic homeostatic potentiation.
Front Cell Neurosci. 2022 Dec 14;16:1074304. doi: 10.3389/fncel.2022.1074304. eCollection 2022.
8
Glutamatergic Synapse Dysfunction in Neuromuscular Junctions Can Be Rescued by Proteostasis Modulation.
Front Mol Neurosci. 2022 Jul 15;15:842772. doi: 10.3389/fnmol.2022.842772. eCollection 2022.
10
Super-resolution microscopy for analyzing neuromuscular junctions and synapses.
Neurosci Lett. 2020 Jan 10;715:134644. doi: 10.1016/j.neulet.2019.134644. Epub 2019 Nov 22.

本文引用的文献

1
Super-resolution microscopy of the synaptic active zone.
Front Cell Neurosci. 2015 Jan 30;9:7. doi: 10.3389/fncel.2015.00007. eCollection 2015.
2
Calcium sensitive ring-like oligomers formed by synaptotagmin.
Proc Natl Acad Sci U S A. 2014 Sep 23;111(38):13966-71. doi: 10.1073/pnas.1415849111. Epub 2014 Sep 8.
3
4
Genetic analysis of the Complexin trans-clamping model for cross-linking SNARE complexes in vivo.
Proc Natl Acad Sci U S A. 2014 Jul 15;111(28):10317-22. doi: 10.1073/pnas.1409311111. Epub 2014 Jun 30.
5
Evoked and spontaneous transmission favored by distinct sets of synapses.
Curr Biol. 2014 Mar 3;24(5):484-93. doi: 10.1016/j.cub.2014.01.022. Epub 2014 Feb 20.
6
Loose coupling between Ca2+ channels and release sensors at a plastic hippocampal synapse.
Science. 2014 Feb 7;343(6171):665-70. doi: 10.1126/science.1244811.
7
Localization microscopy coming of age: from concepts to biological impact.
J Cell Sci. 2013 Aug 15;126(Pt 16):3505-13. doi: 10.1242/jcs.123612.
8
Nanodomain coupling at an excitatory cortical synapse.
Curr Biol. 2013 Feb 4;23(3):244-9. doi: 10.1016/j.cub.2012.12.007. Epub 2012 Dec 27.
9
RIM controls homeostatic plasticity through modulation of the readily-releasable vesicle pool.
J Neurosci. 2012 Nov 21;32(47):16574-85. doi: 10.1523/JNEUROSCI.0981-12.2012.
10
rapidSTORM: accurate, fast open-source software for localization microscopy.
Nat Methods. 2012 Nov;9(11):1040-1. doi: 10.1038/nmeth.2224.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验