Shiu Philip K, Sterne Gabriella R, Spiller Nico, Franconville Romain, Sandoval Andrea, Zhou Joie, Simha Neha, Kang Chan Hyuk, Yu Seongbong, Kim Jinseop S, Dorkenwald Sven, Matsliah Arie, Schlegel Philipp, Szi-Chieh Yu, McKellar Claire E, Sterling Amy, Costa Marta, Eichler Katharina, Jefferis Gregory S X E, Murthy Mala, Bates Alexander Shakeel, Eckstein Nils, Funke Jan, Bidaye Salil S, Hampel Stefanie, Seeds Andrew M, Scott Kristin
Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA.
University of Rochester Medical Center, Department of Biomedical Genetics.
bioRxiv. 2023 May 2:2023.05.02.539144. doi: 10.1101/2023.05.02.539144.
The forthcoming assembly of the adult central brain connectome, containing over 125,000 neurons and 50 million synaptic connections, provides a template for examining sensory processing throughout the brain. Here, we create a leaky integrate-and-fire computational model of the entire brain, based on neural connectivity and neurotransmitter identity, to study circuit properties of feeding and grooming behaviors. We show that activation of sugar-sensing or water-sensing gustatory neurons in the computational model accurately predicts neurons that respond to tastes and are required for feeding initiation. Computational activation of neurons in the feeding region of the brain predicts those that elicit motor neuron firing, a testable hypothesis that we validate by optogenetic activation and behavioral studies. Moreover, computational activation of different classes of gustatory neurons makes accurate predictions of how multiple taste modalities interact, providing circuit-level insight into aversive and appetitive taste processing. Our computational model predicts that the sugar and water pathways form a partially shared appetitive feeding initiation pathway, which our calcium imaging and behavioral experiments confirm. Additionally, we applied this model to mechanosensory circuits and found that computational activation of mechanosensory neurons predicts activation of a small set of neurons comprising the antennal grooming circuit that do not overlap with gustatory circuits, and accurately describes the circuit response upon activation of different mechanosensory subtypes. Our results demonstrate that modeling brain circuits purely from connectivity and predicted neurotransmitter identity generates experimentally testable hypotheses and can accurately describe complete sensorimotor transformations.
即将完成的成人大脑连接组图谱包含超过12.5万个神经元和5000万个突触连接,为研究全脑的感觉处理提供了一个模板。在此,我们基于神经连接性和神经递质特性,创建了一个全脑的泄漏整合-激发计算模型,以研究进食和梳理行为的神经回路特性。我们表明,计算模型中糖感知或水感知味觉神经元的激活准确地预测了对味道有反应且是进食启动所必需的神经元。大脑进食区域神经元的计算激活预测了那些引发运动神经元放电的神经元,这是一个可通过光遗传学激活和行为研究进行验证的可测试假设。此外,不同类别味觉神经元的计算激活准确地预测了多种味觉模式如何相互作用,为厌恶和喜好味觉处理提供了回路层面的见解。我们的计算模型预测,糖和水通路形成了一条部分共享的喜好性进食启动通路,我们的钙成像和行为实验证实了这一点。此外,我们将此模型应用于机械感觉回路,发现机械感觉神经元的计算激活预测了一小部分构成触角梳理回路且不与味觉回路重叠的神经元的激活,并准确描述了不同机械感觉亚型激活时的回路反应。我们的结果表明,仅根据连接性和预测的神经递质特性对脑回路进行建模会产生可通过实验验证的假设,并能准确描述完整的感觉运动转换。