Suppr超能文献

使用12导联心电图诊断心房颤动方法的准确性:一项系统评价和荟萃分析。

Accuracy of methods for diagnosing atrial fibrillation using 12-lead ECG: A systematic review and meta-analysis.

作者信息

Taggar Jaspal S, Coleman Tim, Lewis Sarah, Heneghan Carl, Jones Matthew

机构信息

University of Nottingham, United Kingdom.

University of Nottingham, United Kingdom.

出版信息

Int J Cardiol. 2015 Apr 1;184:175-183. doi: 10.1016/j.ijcard.2015.02.014. Epub 2015 Feb 10.

Abstract

BACKGROUND

Screening for atrial fibrillation (AF) using 12-lead-electrocardiograms (ECGs) has been recommended; however, the best method for interpreting ECGs to diagnose AF is not known. We compared accuracy of methods for diagnosing AF from ECGs.

METHODS

We searched MEDLINE, EMBASE, CINAHL and LILACS until March 24, 2014. Two reviewers identified eligible studies, extracted data and appraised quality using the QUADAS-2 instrument. Meta-analysis, using the bivariate hierarchical random effects method, determined average operating points for sensitivities, specificities, positive and negative likelihood ratios (PLR, NLR) and enabled construction of Summary Receiver Operating Characteristic (SROC) plots.

RESULTS

10 studies investigated 16 methods for interpreting ECGs (n=55,376 participant ECGs). The sensitivity and specificity of automated software (8 studies; 9 methods) were 0.89 (95% C.I. 0.82-0.93) and 0.99 (95% C.I. 0.99-0.99), respectively; PLR 96.6 (95% C.I. 64.2-145.6); NLR 0.11 (95% C.I. 0.07-0.18). Indirect comparisons with software found healthcare professionals (5 studies; 7 methods) had similar sensitivity for diagnosing AF but lower specificity [sensitivity 0.92 (95% C.I. 0.81-0.97), specificity 0.93 (95% C.I. 0.76-0.98), PLR 13.9 (95% C.I. 3.5-55.3), NLR 0.09 (95% C.I. 0.03-0.22)]. Sub-group analyses of primary care professionals found greater specificity for GPs than nurses [GPs: sensitivity 0.91 (95% C.I. 0.68-1.00); specificity 0.96 (95% C.I. 0.89-1.00). Nurses: sensitivity 0.88 (95% C.I. 0.63-1.00); specificity 0.85 (95% C.I. 0.83-0.87)].

CONCLUSIONS

Automated ECG-interpreting software most accurately excluded AF, although its ability to diagnose this was similar to all healthcare professionals. Within primary care, the specificity of AF diagnosis from ECG was greater for GPs than nurses.

摘要

背景

推荐使用12导联心电图(ECG)筛查房颤(AF);然而,尚不清楚解读心电图以诊断房颤的最佳方法。我们比较了从心电图诊断房颤的方法的准确性。

方法

检索MEDLINE、EMBASE、CINAHL和LILACS直至2014年3月24日。两名评审员确定符合条件的研究,提取数据并使用QUADAS - 2工具评估质量。采用双变量分层随机效应方法进行荟萃分析,确定敏感性、特异性、阳性和阴性似然比(PLR、NLR)的平均操作点,并构建汇总接收器操作特征(SROC)图。

结果

10项研究调查了16种解读心电图的方法(n = 55376份参与者心电图)。自动化软件(8项研究;9种方法)的敏感性和特异性分别为0.89(95%置信区间0.82 - 0.93)和0.99(95%置信区间0.99 - 0.99);PLR为96.6(95%置信区间64.2 - 145.6);NLR为0.11(95%置信区间0.07 - 0.18)。与软件的间接比较发现,医疗保健专业人员(5项研究;7种方法)诊断房颤的敏感性相似,但特异性较低[敏感性0.92(95%置信区间0.81 - 0.97),特异性0.93(95%置信区间0.76 - 0.98),PLR 13.9(95%置信区间3.5 - 55.3),NLR 0.09(95%置信区间0.03 - 0.22)]。初级保健专业人员的亚组分析发现,全科医生的特异性高于护士[全科医生:敏感性0.91(95%置信区间0.68 - 1.00);特异性0.96(95%置信区间0.89 - 1.00)。护士:敏感性0.88(95%置信区间0.63 - 1.00);特异性0.85(95%置信区间0.83 - 0.87)]。

结论

自动化心电图解读软件最准确地排除了房颤,尽管其诊断房颤的能力与所有医疗保健专业人员相似。在初级保健中,全科医生从心电图诊断房颤的特异性高于护士。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验