Suppr超能文献

一种用于心脏病专家辅助判定心房颤动和心房扑动发作的深度学习模块化心电图方法。

A deep learning modular ECG approach for cardiologist assisted adjudication of atrial fibrillation and atrial flutter episodes.

作者信息

Fleury Quentin, Dubois Rémi, Christophle-Boulard Sylvain, Extramiana Fabrice, Maison-Blanche Pierre

机构信息

IHU Liryc, Université de Bordeaux, Bordeaux, France.

Microport CRM, Clamart, France.

出版信息

Heart Rhythm O2. 2024 Sep 19;5(12):862-872. doi: 10.1016/j.hroo.2024.09.007. eCollection 2024 Dec.

Abstract

BACKGROUND

Detection of atrial tachyarrhythmias (ATA) on long-term electrocardiogram (ECG) recordings is a prerequisite to reduce ATA-related adverse events. However, the burden of editing massive ECG data is not sustainable. Deep learning (DL) algorithms provide improved performances on resting ECG databases. However, results on long-term Holter recordings are scarce.

OBJECTIVE

We aimed to build and evaluate a DL modular software using ECG features well known to cardiologists with a user interface that allows cardiologists to adjudicate the results and drive a second DL analysis.

METHODS

Using a large (n = 187 recordings, 249,419 one-minute samples), beat-to-beat annotated, two-lead Holter database, we built a DL algorithm with a modular structure mimicking expert physician ECG interpretation to classify atrial rhythms. The DL network includes 3 modules (cardiac rhythm regularity, electrical atrial waveform, and raw voltage by time data) followed by a decision network and a long-term weighting factor. The algorithm was validated on an external database.

RESULTS

F1 scores of our classifier were 99% for ATA detection, 95% for atrial fibrillation, and 90% for atrial flutter. Using the external Massachusetts Institute of Technology database, the classifier obtains an F1-score of 97% for the normal sinus rhythm class and 96% for the ATA class. Residual errors could be corrected by manual deactivation of 1 module in 7 of 15 of the recordings, with an accuracy < 90%.

CONCLUSION

A DL modular software using ECG features well known to cardiologists provided an excellent overall performance. Clinically significant residual errors were most often related to the classification of the atrial arrhythmia type (fibrillation vs flutter). The modular structure of the algorithm helped to edit and correct the artificial intelligence-based first-pass analysis and will provide a basis for explainability.

摘要

背景

在长期心电图(ECG)记录中检测房性快速心律失常(ATA)是减少与ATA相关不良事件的前提条件。然而,编辑海量ECG数据的负担难以持续。深度学习(DL)算法在静息ECG数据库上表现更佳。然而,关于长期动态心电图记录的研究结果却很少。

目的

我们旨在构建并评估一款DL模块化软件,该软件使用心脏病专家熟知的ECG特征,并带有一个用户界面,使心脏病专家能够判定结果并推动进行第二次DL分析。

方法

我们使用一个大型(n = 187份记录,249,419个一分钟样本)、逐搏注释的双导联动态心电图数据库,构建了一种具有模块化结构的DL算法,该结构模仿专家医生的ECG解读方式来对心房节律进行分类。DL网络包括3个模块(心律规律性、心房电波形以及随时间变化的原始电压数据),随后是一个决策网络和一个长期加权因子。该算法在一个外部数据库上进行了验证。

结果

我们分类器的F1分数在ATA检测方面为99%,心房颤动方面为95%,心房扑动方面为90%。使用外部的麻省理工学院数据库,该分类器在正常窦性心律类别上的F1分数为97%,在ATA类别上为96%。在15份记录中的7份记录中,通过手动停用1个模块可以纠正残留误差,此时准确率<90%。

结论

一款使用心脏病专家熟知的ECG特征的DL模块化软件具有出色的整体性能。具有临床意义的残留误差最常与房性心律失常类型(颤动与扑动)的分类有关。该算法的模块化结构有助于编辑和纠正基于人工智能的首次分析,并将为可解释性提供基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/117d/11721725/2362dc96e22e/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验