Lee Young-Sup, Kim Hyeon-Jeong, Cho Seoae, Kim Heebal
Department of Natural Science, Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 151-747, Korea.
C&K Genomics, Seoul 151-742, Korea.
Genomics Inform. 2014 Dec;12(4):254-60. doi: 10.5808/GI.2014.12.4.254. Epub 2014 Dec 31.
Best linear unbiased prediction (BLUP) has been used to estimate the fixed effects and random effects of complex traits. Traditionally, genomic relationship matrix-based (GRM) and random marker-based BLUP analyses are prevalent to estimate the genetic values of complex traits. We used three methods: GRM-based prediction (G-BLUP), random marker-based prediction using an identity matrix (so-called single-nucleotide polymorphism [SNP]-BLUP), and SNP-SNP variance-covariance matrix (so-called SNP-GBLUP). We used 35,675 SNPs and R package "rrBLUP" for the BLUP analysis. The SNP-SNP relationship matrix was calculated using the GRM and Sherman-Morrison-Woodbury lemma. The SNP-GBLUP result was very similar to G-BLUP in the prediction of genetic values. However, there were many discrepancies between SNP-BLUP and the other two BLUPs. SNP-GBLUP has the merit to be able to predict genetic values through SNP effects.
最佳线性无偏预测(BLUP)已被用于估计复杂性状的固定效应和随机效应。传统上,基于基因组关系矩阵(GRM)和基于随机标记的BLUP分析普遍用于估计复杂性状的遗传值。我们使用了三种方法:基于GRM的预测(G-BLUP)、使用单位矩阵的基于随机标记的预测(即所谓的单核苷酸多态性[SNP]-BLUP)以及SNP-SNP方差协方差矩阵(即所谓的SNP-GBLUP)。我们使用35,675个单核苷酸多态性(SNP)和R软件包“rrBLUP”进行BLUP分析。使用GRM和谢尔曼-莫里森-伍德伯里引理计算SNP-SNP关系矩阵。在遗传值预测方面,SNP-GBLUP结果与G-BLUP非常相似。然而,SNP-BLUP与其他两种BLUP之间存在许多差异。SNP-GBLUP的优点是能够通过SNP效应预测遗传值。