Suppr超能文献

基于张量全变分正则化的稳健低剂量CT灌注反褶积法

Robust Low-Dose CT Perfusion Deconvolution via Tensor Total-Variation Regularization.

作者信息

Sanelli Pina C

出版信息

IEEE Trans Med Imaging. 2015 Jul;34(7):1533-1548. doi: 10.1109/TMI.2015.2405015. Epub 2015 Feb 20.

Abstract

Acute brain diseases such as acute strokes and transit ischemic attacks are the leading causes of mortality and morbidity worldwide, responsible for 9% of total death every year. "Time is brain" is a widely accepted concept in acute cerebrovascular disease treatment. Efficient and accurate computational framework for hemodynamic parameters estimation can save critical time for thrombolytic therapy. Meanwhile the high level of accumulated radiation dosage due to continuous image acquisition in CT perfusion (CTP) raised concerns on patient safety and public health. However, low-radiation leads to increased noise and artifacts which require more sophisticated and time-consuming algorithms for robust estimation. In this paper, we focus on developing a robust and efficient framework to accurately estimate the perfusion parameters at low radiation dosage. Specifically, we present a tensor total-variation (TTV) technique which fuses the spatial correlation of the vascular structure and the temporal continuation of the blood signal flow. An efficient algorithm is proposed to find the solution with fast convergence and reduced computational complexity. Extensive evaluations are carried out in terms of sensitivity to noise levels, estimation accuracy, contrast preservation, and performed on digital perfusion phantom estimation, as well as in vivo clinical subjects. Our framework reduces the necessary radiation dose to only 8% of the original level and outperforms the state-of-art algorithms with peak signal-to-noise ratio improved by 32%. It reduces the oscillation in the residue functions, corrects over-estimation of cerebral blood flow (CBF) and under-estimation of mean transit time (MTT), and maintains the distinction between the deficit and normal regions.

摘要

急性脑疾病,如急性中风和短暂性脑缺血发作,是全球范围内导致死亡和发病的主要原因,每年占总死亡人数的9%。“时间就是大脑”是急性脑血管疾病治疗中一个广泛接受的概念。用于血流动力学参数估计的高效准确的计算框架可为溶栓治疗节省关键时间。同时,由于CT灌注(CTP)中连续图像采集导致的高累积辐射剂量引发了对患者安全和公众健康的担忧。然而,低辐射会导致噪声和伪影增加,这需要更复杂且耗时的算法来进行稳健估计。在本文中,我们专注于开发一个稳健且高效的框架,以在低辐射剂量下准确估计灌注参数。具体而言,我们提出了一种张量全变分(TTV)技术,该技术融合了血管结构的空间相关性和血流信号的时间连续性。提出了一种高效算法来找到具有快速收敛和降低计算复杂度的解决方案。在对噪声水平的敏感性、估计准确性、对比度保持等方面进行了广泛评估,并在数字灌注模型估计以及体内临床受试者上进行了测试。我们的框架将所需辐射剂量降低至仅为原始水平的8%,并且在峰值信噪比提高32%的情况下优于现有算法。它减少了残差函数中的振荡,纠正了脑血流量(CBF)的高估和平均通过时间(MTT)的低估,并保持了缺血区域和正常区域之间的差异。

相似文献

1
Robust Low-Dose CT Perfusion Deconvolution via Tensor Total-Variation Regularization.
IEEE Trans Med Imaging. 2015 Jul;34(7):1533-1548. doi: 10.1109/TMI.2015.2405015. Epub 2015 Feb 20.
2
Tensor total-variation regularized deconvolution kegularlzea ueconvolution for efficient low-dose CT perfusion.
Med Image Comput Comput Assist Interv. 2014;17(Pt 1):154-61. doi: 10.1007/978-3-319-10404-1_20.
4
TENDER: Tensor non-local deconvolution enabled radiation reduction in CT perfusion.
Neurocomputing (Amst). 2017 Mar 15;229:13-22. doi: 10.1016/j.neucom.2016.03.109. Epub 2016 Nov 17.
6
Noise modelling of perfusion CT images for robust hemodynamic parameter estimations.
Phys Med Biol. 2022 May 31;67(11). doi: 10.1088/1361-6560/ac6d9b.
9
Contrast-Medium Anisotropy-Aware Tensor Total Variation Model for Robust Cerebral Perfusion CT Reconstruction with Low-Dose Scans.
IEEE Trans Comput Imaging. 2020;6:1375-1388. doi: 10.1109/tci.2020.3023598. Epub 2020 Sep 11.

引用本文的文献

2
A Novel Self-Supervised Learning-Based Method for Dynamic CT Brain Perfusion Imaging.
J Imaging Inform Med. 2025 Aug;38(4):2102-2119. doi: 10.1007/s10278-024-01341-1. Epub 2024 Dec 4.
3
[Nonlocal low-rank and sparse matrix decomposition for low-dose cerebral perfusion CT image restoration].
Nan Fang Yi Ke Da Xue Xue Bao. 2022 Sep 20;42(9):1309-1316. doi: 10.12122/j.issn.1673-4254.2022.09.06.
5
Contrast-Medium Anisotropy-Aware Tensor Total Variation Model for Robust Cerebral Perfusion CT Reconstruction with Low-Dose Scans.
IEEE Trans Comput Imaging. 2020;6:1375-1388. doi: 10.1109/tci.2020.3023598. Epub 2020 Sep 11.
6
TENDER: Tensor non-local deconvolution enabled radiation reduction in CT perfusion.
Neurocomputing (Amst). 2017 Mar 15;229:13-22. doi: 10.1016/j.neucom.2016.03.109. Epub 2016 Nov 17.
7
: Deep Spatial-Temporal Image Restoration Net for Radiation Reduction in CT Perfusion.
Front Neurol. 2019 Jun 26;10:647. doi: 10.3389/fneur.2019.00647. eCollection 2019.
8
Comparison between three-dimensional CT and conventional radiography in proximal tibia morphology.
Medicine (Baltimore). 2018 Jul;97(30):e11632. doi: 10.1097/MD.0000000000011632.
9
Low-Dose Dynamic Cerebral Perfusion Computed Tomography Reconstruction via Kronecker-Basis-Representation Tensor Sparsity Regularization.
IEEE Trans Med Imaging. 2017 Dec;36(12):2546-2556. doi: 10.1109/TMI.2017.2749212. Epub 2017 Sep 4.
10
Iterative reconstruction for dual energy CT with an average image-induced nonlocal means regularization.
Phys Med Biol. 2017 Jul 7;62(13):5556-5574. doi: 10.1088/1361-6560/aa7122. Epub 2017 May 4.

本文引用的文献

1
Tensor total-variation regularized deconvolution kegularlzea ueconvolution for efficient low-dose CT perfusion.
Med Image Comput Comput Assist Interv. 2014;17(Pt 1):154-61. doi: 10.1007/978-3-319-10404-1_20.
2
Tissue-specific sparse deconvolution for low-dose CT perfusion.
Med Image Comput Comput Assist Interv. 2013;16(Pt 1):114-21. doi: 10.1007/978-3-642-40811-3_15.
3
Improving low-dose blood-brain barrier permeability quantification using sparse high-dose induced prior for Patlak model.
Med Image Anal. 2014 Aug;18(6):866-80. doi: 10.1016/j.media.2013.09.008. Epub 2013 Oct 17.
4
Effects of increased image noise on image quality and quantitative interpretation in brain CT perfusion.
AJNR Am J Neuroradiol. 2013 Aug;34(8):1506-12. doi: 10.3174/ajnr.A3448. Epub 2013 Apr 4.
5
Towards robust deconvolution of low-dose perfusion CT: sparse perfusion deconvolution using online dictionary learning.
Med Image Anal. 2013 May;17(4):417-28. doi: 10.1016/j.media.2013.02.005. Epub 2013 Mar 7.
6
Sparsity-based deconvolution of low-dose perfusion CT using learned dictionaries.
Med Image Comput Comput Assist Interv. 2012;15(Pt 1):272-80. doi: 10.1007/978-3-642-33415-3_34.
7
Bayesian hemodynamic parameter estimation by bolus tracking perfusion weighted imaging.
IEEE Trans Med Imaging. 2012 Jul;31(7):1381-95. doi: 10.1109/TMI.2012.2189890. Epub 2012 Mar 6.
8
Low-dose computed tomography image restoration using previous normal-dose scan.
Med Phys. 2011 Oct;38(10):5713-31. doi: 10.1118/1.3638125.
9
Deconvolution-Based CT and MR Brain Perfusion Measurement: Theoretical Model Revisited and Practical Implementation Details.
Int J Biomed Imaging. 2011;2011:467563. doi: 10.1155/2011/467563. Epub 2011 Aug 28.
10
Low-dose CT reconstruction via edge-preserving total variation regularization.
Phys Med Biol. 2011 Sep 21;56(18):5949-67. doi: 10.1088/0031-9155/56/18/011. Epub 2011 Aug 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验