Lin Ji, Lyles Robert H
Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, 46285, U.S.A.
Stat Med. 2015 May 20;34(11):1925-39. doi: 10.1002/sim.6456. Epub 2015 Feb 23.
We explore the 'reassessment' design in a logistic regression setting, where a second wave of sampling is applied to recover a portion of the missing data on a binary exposure and/or outcome variable. We construct a joint likelihood function based on the original model of interest and a model for the missing data mechanism, with emphasis on non-ignorable missingness. The estimation is carried out by numerical maximization of the joint likelihood function with close approximation of the accompanying Hessian matrix, using sharable programs that take advantage of general optimization routines in standard software. We show how likelihood ratio tests can be used for model selection and how they facilitate direct hypothesis testing for whether missingness is at random. Examples and simulations are presented to demonstrate the performance of the proposed method.
我们在逻辑回归设置中探索“重新评估”设计,其中应用第二轮抽样来恢复二元暴露和/或结果变量上的部分缺失数据。我们基于感兴趣的原始模型和缺失数据机制模型构建联合似然函数,重点关注不可忽略的缺失性。估计通过对联合似然函数进行数值最大化并紧密逼近伴随的海森矩阵来进行,使用利用标准软件中的通用优化例程的可共享程序。我们展示了似然比检验如何用于模型选择以及它们如何促进对缺失是否为随机的直接假设检验。给出了示例和模拟以证明所提出方法的性能。