Suppr超能文献

Logistic regression with incompletely observed categorical covariates--investigating the sensitivity against violation of the missing at random assumption.

作者信息

Vach W, Blettner M

机构信息

Institute of Medical Biometry and Informatics, University of Freiburg, Germany.

出版信息

Stat Med. 1995 Jun 30;14(12):1315-29. doi: 10.1002/sim.4780141205.

Abstract

Missing values in the covariates are a widespread complication in the statistical inference of regression models. The maximum likelihood principle requires specification of the distribution of the covariates, at least in part. For categorical covariates, log-linear models can be used. Additionally, the missing at random assumption is necessary, which excludes a dependence of the occurrence of missing values on the unobserved covariate values. This assumption is often highly questionable. We present a framework to specify alternative missing value mechanisms such that maximum likelihood estimation of the regression parameters under a specified alternative is possible. This allows investigation of the sensitivity of a single estimate against violations of the missing at random assumption. The possible results of a sensitivity analysis are illustrated by artificial examples. The practical application is demonstrated by the analysis of two case-control studies.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验