文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

MixClone:一种用于推断肿瘤亚克隆群体的混合模型。

MixClone: a mixture model for inferring tumor subclonal populations.

作者信息

Li Yi, Xie Xiaohui

出版信息

BMC Genomics. 2015;16 Suppl 2(Suppl 2):S1. doi: 10.1186/1471-2164-16-S2-S1. Epub 2015 Jan 21.


DOI:10.1186/1471-2164-16-S2-S1
PMID:25707430
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC4331709/
Abstract

BACKGROUND: Tumor genomes are often highly heterogeneous, consisting of genomes from multiple subclonal types. Complete characterization of all subclonal types is a fundamental need in tumor genome analysis. With the advancement of next-generation sequencing, computational methods have recently been developed to infer tumor subclonal populations directly from cancer genome sequencing data. Most of these methods are based on sequence information from somatic point mutations, However, the accuracy of these algorithms depends crucially on the quality of the somatic mutations returned by variant calling algorithms, and usually requires a deep coverage to achieve a reasonable level of accuracy. RESULTS: We describe a novel probabilistic mixture model, MixClone, for inferring the cellular prevalences of subclonal populations directly from whole genome sequencing of paired normal-tumor samples. MixClone integrates sequence information of somatic copy number alterations and allele frequencies within a unified probabilistic framework. We demonstrate the utility of the method using both simulated and real cancer sequencing datasets, and show that it significantly outperforms existing methods for inferring tumor subclonal populations. The MixClone package is written in Python and is publicly available at https://github.com/uci-cbcl/MixClone. CONCLUSIONS: The probabilistic mixture model proposed here provides a new framework for subclonal analysis based on cancer genome sequencing data. By applying the method to both simulated and real cancer sequencing data, we show that integrating sequence information from both somatic copy number alterations and allele frequencies can significantly improve the accuracy of inferring tumor subclonal populations.

摘要

背景:肿瘤基因组通常具有高度异质性,由多种亚克隆类型的基因组组成。全面表征所有亚克隆类型是肿瘤基因组分析的基本需求。随着下一代测序技术的发展,最近已开发出计算方法,可直接从癌症基因组测序数据中推断肿瘤亚克隆群体。这些方法大多基于体细胞点突变的序列信息,然而,这些算法的准确性关键取决于变异检测算法返回的体细胞突变的质量,并且通常需要深度覆盖才能达到合理的准确性水平。 结果:我们描述了一种新颖的概率混合模型MixClone,用于直接从配对的正常-肿瘤样本的全基因组测序中推断亚克隆群体的细胞丰度。MixClone在统一的概率框架内整合了体细胞拷贝数改变和等位基因频率的序列信息。我们使用模拟和真实的癌症测序数据集证明了该方法的实用性,并表明它在推断肿瘤亚克隆群体方面明显优于现有方法。MixClone软件包用Python编写,可在https://github.com/uci-cbcl/MixClone上公开获取。 结论:本文提出的概率混合模型为基于癌症基因组测序数据的亚克隆分析提供了一个新框架。通过将该方法应用于模拟和真实的癌症测序数据,我们表明整合来自体细胞拷贝数改变和等位基因频率的序列信息可以显著提高推断肿瘤亚克隆群体的准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1132/4331709/991ee9780672/1471-2164-16-S2-S1-4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1132/4331709/39e2b739a0e8/1471-2164-16-S2-S1-1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1132/4331709/df96d957a2d0/1471-2164-16-S2-S1-2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1132/4331709/bd9c66b4b192/1471-2164-16-S2-S1-3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1132/4331709/991ee9780672/1471-2164-16-S2-S1-4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1132/4331709/39e2b739a0e8/1471-2164-16-S2-S1-1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1132/4331709/df96d957a2d0/1471-2164-16-S2-S1-2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1132/4331709/bd9c66b4b192/1471-2164-16-S2-S1-3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1132/4331709/991ee9780672/1471-2164-16-S2-S1-4.jpg

相似文献

[1]
MixClone: a mixture model for inferring tumor subclonal populations.

BMC Genomics. 2015

[2]
Deconvolving tumor purity and ploidy by integrating copy number alterations and loss of heterozygosity.

Bioinformatics. 2014-4-2

[3]
CLImAT-HET: detecting subclonal copy number alterations and loss of heterozygosity in heterogeneous tumor samples from whole-genome sequencing data.

BMC Med Genomics. 2017-3-15

[4]
Clonality Inference from Single Tumor Samples Using Low-Coverage Sequence Data.

J Comput Biol. 2017-6

[5]
CloneCNA: detecting subclonal somatic copy number alterations in heterogeneous tumor samples from whole-exome sequencing data.

BMC Bioinformatics. 2016-8-19

[6]
TargetClone: A multi-sample approach for reconstructing subclonal evolution of tumors.

PLoS One. 2018-11-29

[7]
PhyloWGS: reconstructing subclonal composition and evolution from whole-genome sequencing of tumors.

Genome Biol. 2015-2-13

[8]
Modeling and correct the GC bias of tumor and normal WGS data for SCNA based tumor subclonal population inferring.

BMC Bioinformatics. 2018-4-11

[9]
Sequenza: allele-specific copy number and mutation profiles from tumor sequencing data.

Ann Oncol. 2015-1

[10]
Integrative pipeline for profiling DNA copy number and inferring tumor phylogeny.

Bioinformatics. 2018-6-15

引用本文的文献

[1]
Reconstructing tumor clonal lineage trees incorporating single-nucleotide variants, copy number alterations and structural variations.

Bioinformatics. 2022-6-24

[2]
A Pipeline for Reconstructing Somatic Copy Number Alternation's Subclonal Population-Based Next-Generation Sequencing Data.

Front Genet. 2020-2-27

[3]
Decomposing the subclonal structure of tumors with two-way mixture models on copy number aberrations.

PLoS One. 2018-12-12

[4]
Modeling and correct the GC bias of tumor and normal WGS data for SCNA based tumor subclonal population inferring.

BMC Bioinformatics. 2018-4-11

本文引用的文献

[1]
A combinatorial approach for analyzing intra-tumor heterogeneity from high-throughput sequencing data.

Bioinformatics. 2014-6-15

[2]
Deconvolving tumor purity and ploidy by integrating copy number alterations and loss of heterozygosity.

Bioinformatics. 2014-4-2

[3]
PyClone: statistical inference of clonal population structure in cancer.

Nat Methods. 2014-3-16

[4]
Inferring clonal evolution of tumors from single nucleotide somatic mutations.

BMC Bioinformatics. 2014-2-1

[5]
EXPANDS: expanding ploidy and allele frequency on nested subpopulations.

Bioinformatics. 2013-10-30

[6]
THetA: inferring intra-tumor heterogeneity from high-throughput DNA sequencing data.

Genome Biol. 2013-7-29

[7]
A comparative analysis of algorithms for somatic SNV detection in cancer.

Bioinformatics. 2013-7-9

[8]
Lessons from the cancer genome.

Cell. 2013-3-28

[9]
Evolution and impact of subclonal mutations in chronic lymphocytic leukemia.

Cell. 2013-2-14

[10]
Sequence analysis of mutations and translocations across breast cancer subtypes.

Nature. 2012-6-20

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索