a Department of Computer Applications , Bannari Amman Institute of Technology , Tamil Nadu , India.
Artif Cells Nanomed Biotechnol. 2016 May;44(3):985-9. doi: 10.3109/21691401.2015.1008506. Epub 2015 Feb 24.
White blood cells (WBCs) or leukocytes are an important part of the body's defense against infectious organisms and foreign substances. WBC segmentation is a challenging issue because of the morphological diversity of WBCs and the complex and uncertain background of blood smear images. The standard ELM classification techniques are used for WBC segmentation. The generalization performance of the ELM classifier has not achieved the maximum nearest accuracy of image segmentation. This paper gives a novel technique for WBC detection based on the fast relevance vector machine (Fast-RVM). Firstly, astonishingly sparse relevance vectors (RVs) are obtained while fitting the histogram by RVM. Next, the relevant required threshold value is directly sifted from these limited RVs. Finally, the entire connective WBC regions are segmented from the original image. The proposed method successfully works for WBC detection, and effectively reduces the effects brought about by illumination and staining. To achieve the maximum accuracy of the RVM classifier, we design a search for the best value of the parameters that tune its discriminant function, and upstream by looking for the best subset of features that feed the classifier. Therefore, this proposed RVM method effectively works for WBC detection, and effectively reduces the computational time and preserves the images.
白细胞(WBC)或白细胞是人体抵御感染生物和异物的重要组成部分。由于 WBC 的形态多样性以及血涂片图像的复杂和不确定背景,WBC 分割是一个具有挑战性的问题。标准的 ELM 分类技术用于 WBC 分割。ELM 分类器的泛化性能尚未达到图像分割的最大最近精度。本文提出了一种基于快速相关向量机(Fast-RVM)的新型白细胞检测技术。首先,通过 RVM 拟合直方图,获得惊人稀疏的相关向量(RV)。接下来,直接从这些有限的 RV 中筛选出相关的所需阈值。最后,从原始图像中分割出整个连接的 WBC 区域。该方法成功地应用于白细胞检测,并有效地减少了光照和染色带来的影响。为了实现 RVM 分类器的最大精度,我们设计了一种搜索最佳参数值的方法,以调整其判别函数,并通过寻找最佳的特征子集来馈送分类器,从而提高分类器的性能。因此,该方法有效地应用于白细胞检测,并有效地减少了计算时间和保留了图像。