Suppr超能文献

利用生成对抗网络和深度卷积神经网络改进白细胞分类

Improved Classification of White Blood Cells with the Generative Adversarial Network and Deep Convolutional Neural Network.

作者信息

Almezhghwi Khaled, Serte Sertan

机构信息

Electrical and Electronic Engineering, Near East University, Nicosia, North Cyprus, Mersin 10, Turkey.

出版信息

Comput Intell Neurosci. 2020 Jul 9;2020:6490479. doi: 10.1155/2020/6490479. eCollection 2020.

Abstract

White blood cells (leukocytes) are a very important component of the blood that forms the immune system, which is responsible for fighting foreign elements. The five types of white blood cells include , , , , and , where each type constitutes a different proportion and performs specific functions. Being able to classify and, therefore, count these different constituents is critical for assessing the health of patients and infection risks. Generally, laboratory experiments are used for determining the type of a white blood cell. The staining process and manual evaluation of acquired images under the microscope are tedious and subject to human errors. Moreover, a major challenge is the unavailability of training data that cover the morphological variations of white blood cells so that trained classifiers can generalize well. As such, this paper investigates image transformation operations and generative adversarial networks (GAN) for data augmentation and state-of-the-art deep neural networks (i.e., VGG-16, ResNet, and DenseNet) for the classification of white blood cells into the five types. Furthermore, we explore initializing the DNNs' weights randomly or using weights pretrained on the CIFAR-100 dataset. In contrast to other works that require advanced image preprocessing and manual feature extraction before classification, our method works directly with the acquired images. The results of extensive experiments show that the proposed method can successfully classify white blood cells. The best DNN model, DenseNet-169, yields a validation accuracy of 98.8%. Particularly, we find that the proposed approach outperforms other methods that rely on sophisticated image processing and manual feature engineering.

摘要

白细胞(白血球)是血液中非常重要的组成部分,构成了免疫系统,负责对抗外来物质。白细胞的五种类型包括 、 、 、 和 ,每种类型占不同比例并执行特定功能。能够对这些不同成分进行分类并计数对于评估患者健康状况和感染风险至关重要。一般来说,实验室实验用于确定白细胞的类型。显微镜下对采集图像的染色过程和人工评估既繁琐又容易出现人为误差。此外,一个主要挑战是缺乏涵盖白细胞形态变化的训练数据,以便训练有素的分类器能够很好地泛化。因此,本文研究了用于数据增强的图像变换操作和生成对抗网络(GAN),以及用于将白细胞分类为五种类型的先进深度神经网络(即VGG - 16、ResNet和DenseNet)。此外,我们探索了随机初始化深度神经网络的权重或使用在CIFAR - 100数据集上预训练的权重。与其他在分类前需要先进图像预处理和手动特征提取的工作不同,我们的方法直接处理采集到的图像。大量实验结果表明,所提出的方法能够成功地对白细胞进行分类。最佳的深度神经网络模型DenseNet - 169的验证准确率达到了98.8%。特别地,我们发现所提出的方法优于其他依赖复杂图像处理和手动特征工程的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acd8/7368188/d6c6a68a74b9/CIN2020-6490479.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验