Leather Process Technology Division, CSIR-Central Leather Research Institute, Chennai, India.
School of Computer Science and Engineering, Vellore Institute of Technology, Chennai, India.
Sci Rep. 2024 Jul 29;14(1):17447. doi: 10.1038/s41598-024-67826-9.
The bone marrow overproduces immature cells in the malignancy known as Acute Lymphoblastic Leukemia (ALL). In the United States, about 6500 occurrences of ALL are diagnosed each year in both children and adults, comprising nearly 25% of pediatric cancer cases. Recently, many computer-assisted diagnosis (CAD) systems have been proposed to aid hematologists in reducing workload, providing correct results, and managing enormous volumes of data. Traditional CAD systems rely on hematologists' expertise, specialized features, and subject knowledge. Utilizing early detection of ALL can aid radiologists and doctors in making medical decisions. In this study, Deep Dilated Residual Convolutional Neural Network (DDRNet) is presented for the classification of blood cell images, focusing on eosinophils, lymphocytes, monocytes, and neutrophils. To tackle challenges like vanishing gradients and enhance feature extraction, the model incorporates Deep Residual Dilated Blocks (DRDB) for faster convergence. Conventional residual blocks are strategically placed between layers to preserve original information and extract general feature maps. Global and Local Feature Enhancement Blocks (GLFEB) balance weak contributions from shallow layers for improved feature normalization. The global feature from the initial convolution layer, when combined with GLFEB-processed features, reinforces classification representations. The Tanh function introduces non-linearity. A Channel and Spatial Attention Block (CSAB) is integrated into the neural network to emphasize or minimize specific feature channels, while fully connected layers transform the data. The use of a sigmoid activation function concentrates on relevant features for multiclass lymphoblastic leukemia classification The model was analyzed with Kaggle dataset (16,249 images) categorized into four classes, with a training and testing ratio of 80:20. Experimental results showed that DRDB, GLFEB and CSAB blocks' feature discrimination ability boosted the DDRNet model F1 score to 0.96 with minimal computational complexity and optimum classification accuracy of 99.86% and 91.98% for training and testing data. The DDRNet model stands out from existing methods due to its high testing accuracy of 91.98%, F1 score of 0.96, minimal computational complexity, and enhanced feature discrimination ability. The strategic combination of these blocks (DRDB, GLFEB, and CSAB) are designed to address specific challenges in the classification process, leading to improved discrimination of features crucial for accurate multi-class blood cell image identification. Their effective integration within the model contributes to the superior performance of DDRNet.
骨髓在称为急性淋巴细胞白血病(ALL)的恶性肿瘤中过度产生未成熟细胞。在美国,每年约有 6500 例 ALL 在儿童和成人中被诊断出来,占儿科癌症病例的近 25%。最近,许多计算机辅助诊断(CAD)系统被提出,以帮助血液学家减少工作量、提供正确的结果并管理大量的数据。传统的 CAD 系统依赖于血液学家的专业知识、专门的特征和主题知识。利用 ALL 的早期检测可以帮助放射科医生和医生做出医疗决策。在这项研究中,提出了深度扩张残差卷积神经网络(DDRNet),用于分类血细胞图像,重点是嗜酸性粒细胞、淋巴细胞、单核细胞和中性粒细胞。为了解决梯度消失等挑战,并增强特征提取能力,该模型采用了深度残差扩张块(DRDB),以实现更快的收敛。传统的残差块被策略性地放置在层之间,以保留原始信息并提取通用特征图。全局和局部特征增强块(GLFEB)平衡浅层贡献较弱,以实现特征归一化。初始卷积层的全局特征与经过 GLFEB 处理的特征结合,增强分类表示。Tanh 函数引入了非线性。通道和空间注意力块(CSAB)被集成到神经网络中,以强调或最小化特定的特征通道,而全连接层则转换数据。使用 sigmoid 激活函数集中在与多类淋巴细胞白血病分类相关的特征上。该模型使用 Kaggle 数据集(16249 张图像)进行分析,分为四类,训练和测试比例为 80:20。实验结果表明,DRDB、GLFEB 和 CSAB 块的特征判别能力将 DDRNet 模型的 F1 得分提高到 0.96,同时具有最小的计算复杂度和最佳的分类精度,分别为 99.86%和 91.98%,用于训练和测试数据。与现有方法相比,DDRNet 模型的测试精度高达 91.98%、F1 得分 0.96、计算复杂度最小、特征判别能力增强,因此脱颖而出。这些块(DRDB、GLFEB 和 CSAB)的战略组合旨在解决分类过程中的特定挑战,从而提高对准确多类血细胞图像识别至关重要的特征的判别能力。它们在模型中的有效集成有助于提高 DDRNet 的性能。