Suppr超能文献

通过自监督学习实现白细胞图像的快速稳健分割

Fast and robust segmentation of white blood cell images by self-supervised learning.

作者信息

Zheng Xin, Wang Yong, Wang Guoyou, Liu Jianguo

机构信息

The University Key Laboratory of Intelligent Perception and Computing of Anhui Province, School of Computer and Information, Anqing Normal University, Anqing 246133, China.

Department of Computer Science and Technology, The Hong Kong University of Science and Technology, Hong Kong, China.

出版信息

Micron. 2018 Apr;107:55-71. doi: 10.1016/j.micron.2018.01.010. Epub 2018 Feb 1.

Abstract

A fast and accurate white blood cell (WBC) segmentation remains a challenging task, as different WBCs vary significantly in color and shape due to cell type differences, staining technique variations and the adhesion between the WBC and red blood cells. In this paper, a self-supervised learning approach, consisting of unsupervised initial segmentation and supervised segmentation refinement, is presented. The first module extracts the overall foreground region from the cell image by K-means clustering, and then generates a coarse WBC region by touching-cell splitting based on concavity analysis. The second module further uses the coarse segmentation result of the first module as automatic labels to actively train a support vector machine (SVM) classifier. Then, the trained SVM classifier is further used to classify each pixel of the image and achieve a more accurate segmentation result. To improve its segmentation accuracy, median color features representing the topological structure and a new weak edge enhancement operator (WEEO) handling fuzzy boundary are introduced. To further reduce its time cost, an efficient cluster sampling strategy is also proposed. We tested the proposed approach with two blood cell image datasets obtained under various imaging and staining conditions. The experiment results show that our approach has a superior performance of accuracy and time cost on both datasets.

摘要

快速准确地进行白细胞(WBC)分割仍然是一项具有挑战性的任务,因为不同的白细胞由于细胞类型差异、染色技术变化以及白细胞与红细胞之间的黏附,在颜色和形状上有很大差异。本文提出了一种自监督学习方法,该方法由无监督初始分割和监督分割细化组成。第一个模块通过K均值聚类从细胞图像中提取整体前景区域,然后基于凹度分析通过接触细胞分裂生成粗略的白细胞区域。第二个模块进一步将第一个模块的粗略分割结果用作自动标签,以主动训练支持向量机(SVM)分类器。然后,使用训练好的SVM分类器对图像的每个像素进行分类,以获得更准确的分割结果。为了提高其分割精度,引入了表示拓扑结构的中值颜色特征和处理模糊边界的新型弱边缘增强算子(WEEO)。为了进一步降低其时间成本,还提出了一种有效的聚类采样策略。我们使用在各种成像和染色条件下获得的两个血细胞图像数据集对所提出的方法进行了测试。实验结果表明,我们的方法在两个数据集上均具有出色的精度和时间成本性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验