Suppr超能文献

骨研究中的大数据挑战:全基因组关联研究与新一代测序

Big data challenges in bone research: genome-wide association studies and next-generation sequencing.

作者信息

Alonso Nerea, Lucas Gavin, Hysi Pirro

机构信息

Rheumatic Diseases Unit, MRC Institute of Genetics and Molecular Medicine, Centre for Genomic and Experimental Medicine, Western General Hospital, University of Edinburgh , Edinburgh, UK.

Clear Genetics SL , Barcelona, Spain.

出版信息

Bonekey Rep. 2015 Feb 11;4:635. doi: 10.1038/bonekey.2015.2. eCollection 2015.

Abstract

Genome-wide association studies (GWAS) have been developed as a practical method to identify genetic loci associated with disease by scanning multiple markers across the genome. Significant advances in the genetics of complex diseases have been made owing to advances in genotyping technologies, the progress of projects such as HapMap and 1000G and the emergence of genetics as a collaborative discipline. Because of its great potential to be used in parallel by multiple collaborators, it is important to adhere to strict protocols assuring data quality and analyses. Quality control analyses must be applied to each sample and each single-nucleotide polymorphism (SNP). The software package PLINK is capable of performing the whole range of necessary quality control tests. Genotype imputation has also been developed to substantially increase the power of GWAS methodology. Imputation permits the investigation of associations at genetic markers that are not directly genotyped. Results of individual GWAS reports can be combined through meta-analysis. Finally, next-generation sequencing (NGS) has gained popularity in recent years through its capacity to analyse a much greater number of markers across the genome. Although NGS platforms are capable of examining a higher number of SNPs compared with GWA studies, the results obtained by NGS require careful interpretation, as their biological correlation is incompletely understood. In this article, we will discuss the basic features of such protocols.

摘要

全基因组关联研究(GWAS)已发展成为一种实用方法,通过扫描基因组中的多个标记来识别与疾病相关的基因位点。由于基因分型技术的进步、国际人类基因组单体型图计划(HapMap)和千人基因组计划(1000G)等项目的进展以及遗传学作为一门合作学科的出现,复杂疾病遗传学取得了重大进展。由于其具有被多个合作者并行使用的巨大潜力,因此遵守确保数据质量和分析的严格方案非常重要。质量控制分析必须应用于每个样本和每个单核苷酸多态性(SNP)。软件包PLINK能够执行所有必要的质量控制测试。基因型填补技术也已得到发展,以大幅提高GWAS方法的效能。填补允许对未直接进行基因分型的遗传标记处的关联进行研究。各个GWAS报告的结果可以通过荟萃分析进行合并。最后,近年来,新一代测序(NGS)因其能够分析基因组中更多数量的标记而受到欢迎。尽管与全基因组关联研究相比,NGS平台能够检测更多的SNP,但由于其生物学相关性尚未完全了解,因此对NGS获得的结果需要仔细解读。在本文中,我们将讨论此类方案的基本特征。

相似文献

1
Big data challenges in bone research: genome-wide association studies and next-generation sequencing.
Bonekey Rep. 2015 Feb 11;4:635. doi: 10.1038/bonekey.2015.2. eCollection 2015.
2
Extending the use of GWAS data by combining data from different genetic platforms.
PLoS One. 2017 Feb 28;12(2):e0172082. doi: 10.1371/journal.pone.0172082. eCollection 2017.
4
Comparison of HapMap and 1000 Genomes Reference Panels in a Large-Scale Genome-Wide Association Study.
PLoS One. 2017 Jan 20;12(1):e0167742. doi: 10.1371/journal.pone.0167742. eCollection 2017.
5
Endometrial vezatin and its association with endometriosis risk.
Hum Reprod. 2016 May;31(5):999-1013. doi: 10.1093/humrep/dew047. Epub 2016 Mar 22.
6
Shared genetic factors for age at natural menopause in Iranian and European women.
Hum Reprod. 2013 Jul;28(7):1987-94. doi: 10.1093/humrep/det106. Epub 2013 Apr 16.
8
Impact of genotyping errors on statistical power of association tests in genomic analyses: A case study.
Genet Epidemiol. 2017 Feb;41(2):152-162. doi: 10.1002/gepi.22027. Epub 2016 Dec 26.
10
Genotype Imputation in Genome-Wide Association Studies.
Curr Protoc Hum Genet. 2019 Jun;102(1):e84. doi: 10.1002/cphg.84.

本文引用的文献

1
Development and evaluation of a genetic risk score for obesity.
Biodemography Soc Biol. 2013;59(1):85-100. doi: 10.1080/19485565.2013.774628.
2
Meta-analysis methods for genome-wide association studies and beyond.
Nat Rev Genet. 2013 Jun;14(6):379-89. doi: 10.1038/nrg3472. Epub 2013 May 9.
3
Improved whole-chromosome phasing for disease and population genetic studies.
Nat Methods. 2013 Jan;10(1):5-6. doi: 10.1038/nmeth.2307.
4
Sample size and statistical power calculation in genetic association studies.
Genomics Inform. 2012 Jun;10(2):117-22. doi: 10.5808/GI.2012.10.2.117. Epub 2012 Jun 30.
6
Guidelines for genome-wide association studies.
PLoS Genet. 2012 Jul;8(7):e1002812. doi: 10.1371/journal.pgen.1002812. Epub 2012 Jul 5.
8
Genotype imputation with thousands of genomes.
G3 (Bethesda). 2011 Nov;1(6):457-70. doi: 10.1534/g3.111.001198. Epub 2011 Nov 1.
9
What should the genome-wide significance threshold be? Empirical replication of borderline genetic associations.
Int J Epidemiol. 2012 Feb;41(1):273-86. doi: 10.1093/ije/dyr178. Epub 2011 Dec 5.
10
A linear complexity phasing method for thousands of genomes.
Nat Methods. 2011 Dec 4;9(2):179-81. doi: 10.1038/nmeth.1785.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验