Schisler Jonathan C, Grevengoed Trisha J, Pascual Florencia, Cooper Daniel E, Ellis Jessica M, Paul David S, Willis Monte S, Patterson Cam, Jia Wei, Coleman Rosalind A
Division of Cardiology, Department of Medicine, University of North Carolina, Chapel Hill, NC (J.C.S., C.P.).
Department of Nutrition, University of North Carolina, Chapel Hill, NC (T.J.G., F.P., D.E.C., J.M.E., D.S.P., R.A.C.).
J Am Heart Assoc. 2015 Feb 24;4(2):e001136. doi: 10.1161/JAHA.114.001136.
Long chain acyl-CoA synthetases (ACSL) catalyze long-chain fatty acids (FA) conversion to acyl-CoAs. Temporal ACSL1 inactivation in mouse hearts (Acsl1(H-/-)) impaired FA oxidation and dramatically increased glucose uptake, glucose oxidation, and mTOR activation, resulting in cardiac hypertrophy. We used unbiased metabolomics and gene expression analyses to elucidate the cardiac cellular response to increased glucose use in a genetic model of inactivated FA oxidation.
Metabolomics analysis identified 60 metabolites altered in Acsl1(H-/-) hearts, including 6 related to glucose metabolism and 11 to cysteine and glutathione pathways. Concurrently, global cardiac transcriptional analysis revealed differential expression of 568 genes in Acsl1(H-/-) hearts, a subset of which we hypothesized were targets of mTOR; subsequently, we measured the transcriptional response of several genes after chronic mTOR inhibition via rapamycin treatment during the period in which cardiac hypertrophy develops. Hearts from Acsl1(H-/-) mice increased expression of several Hif1α-responsive glycolytic genes regulated by mTOR; additionally, expression of Scl7a5, Gsta1/2, Gdf15, and amino acid-responsive genes, Fgf21, Asns, Trib3, Mthfd2, were strikingly increased by mTOR activation.
The switch from FA to glucose use causes mTOR-dependent alterations in cardiac metabolism. We identified cardiac mTOR-regulated genes not previously identified in other cellular models, suggesting heart-specific mTOR signaling. Increased glucose use also changed glutathione-related pathways and compensation by mTOR. The hypertrophy, oxidative stress, and metabolic changes that occur within the heart when glucose supplants FA as a major energy source suggest that substrate switching to glucose is not entirely benign.
长链脂酰辅酶A合成酶(ACSL)催化长链脂肪酸(FA)转化为脂酰辅酶A。小鼠心脏中ACSL1的瞬时失活(Acsl1(H-/-))损害了脂肪酸氧化,并显著增加了葡萄糖摄取、葡萄糖氧化和mTOR激活,导致心脏肥大。我们使用非靶向代谢组学和基因表达分析来阐明在脂肪酸氧化失活的遗传模型中,心脏细胞对葡萄糖利用增加的反应。
代谢组学分析确定了Acsl1(H-/-)心脏中60种代谢物发生改变,其中6种与葡萄糖代谢相关,11种与半胱氨酸和谷胱甘肽途径相关。同时,整体心脏转录分析显示Acsl1(H-/-)心脏中有568个基因表达差异,我们推测其中一部分是mTOR的靶标;随后,我们在心脏肥大发展期间通过雷帕霉素治疗慢性抑制mTOR后,测量了几个基因的转录反应。来自Acsl1(H-/-)小鼠的心脏增加了几种受mTOR调节的Hif1α反应性糖酵解基因的表达;此外,mTOR激活显著增加了Scl7a5、Gsta1/2、Gdf15以及氨基酸反应性基因Fgf21、Asns、Trib3、Mthfd2的表达。
从脂肪酸利用向葡萄糖利用的转变导致心脏代谢中mTOR依赖性改变。我们鉴定出了在其他细胞模型中未被发现的心脏mTOR调节基因,提示存在心脏特异性mTOR信号传导。葡萄糖利用增加还改变了与谷胱甘肽相关的途径并通过mTOR进行代偿。当葡萄糖取代脂肪酸作为主要能量来源时,心脏内发生的肥大、氧化应激和代谢变化表明底物转换为葡萄糖并非完全无害。