Cheng Yu-Jen, Wang Mei-Cheng
Institute of Statistics, National Tsing Hua University, Hsin-Chu 300, Taiwan.
Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, U.S.A.
Biometrics. 2015 Jun;71(2):302-12. doi: 10.1111/biom.12286. Epub 2015 Feb 25.
This article presents methods and inference for causal estimation in semiparametric transformation models for the prevalent survival data. Through the estimation of the transformation models and covariate distribution, we propose a few analytical procedures to estimate the causal survival function. As the data are observational, the unobserved potential outcome (survival time) may be associated with the treatment assignment, and therefore there may exist a systematic imbalance between the data observed from each treatment arm. Further, due to prevalent sampling, subjects are observed only if they have not experienced the failure event when data collection began, causing the prevalent sampling bias. We propose a unified approach, which simultaneously corrects the bias from the prevalent sampling and balances the systematic differences from the observational data. We illustrate in the simulation study that standard analysis without proper adjustment would result in biased causal inference. Large sample properties of the proposed estimation procedures are established by techniques of empirical processes and examined by simulation studies. The proposed methods are applied to the Surveillance, Epidemiology, and End Results (SEER) and Medicare-linked data for women diagnosed with breast cancer.
本文介绍了用于流行生存数据的半参数转换模型中因果估计的方法和推断。通过对转换模型和协变量分布的估计,我们提出了一些分析程序来估计因果生存函数。由于数据是观察性的,未观察到的潜在结果(生存时间)可能与治疗分配相关,因此每个治疗组观察到的数据之间可能存在系统性失衡。此外,由于流行抽样,只有在数据收集开始时未经历失败事件的受试者才会被观察到,从而导致流行抽样偏差。我们提出了一种统一的方法,该方法同时校正流行抽样带来的偏差,并平衡观察性数据中的系统性差异。我们在模拟研究中表明,未经适当调整的标准分析会导致有偏差的因果推断。所提出的估计程序的大样本性质通过经验过程技术建立,并通过模拟研究进行检验。所提出的方法应用于监测、流行病学和最终结果(SEER)以及与医疗保险相关的被诊断患有乳腺癌的女性数据。