Suppr超能文献

使用现患生存数据估计倾向得分和因果生存函数。

Estimating propensity scores and causal survival functions using prevalent survival data.

作者信息

Cheng Yu-Jen, Wang Mei-Cheng

机构信息

Institute of Statistics, National Tsing Hua University, Hsin-Chu 300, Taiwan.

出版信息

Biometrics. 2012 Sep;68(3):707-16. doi: 10.1111/j.1541-0420.2012.01754.x. Epub 2012 Jul 26.

Abstract

This article develops semiparametric approaches for estimation of propensity scores and causal survival functions from prevalent survival data. The analytical problem arises when the prevalent sampling is adopted for collecting failure times and, as a result, the covariates are incompletely observed due to their association with failure time. The proposed procedure for estimating propensity scores shares interesting features similar to the likelihood formulation in case-control study, but in our case it requires additional consideration in the intercept term. The result shows that the corrected propensity scores in logistic regression setting can be obtained through standard estimation procedure with specific adjustments on the intercept term. For causal estimation, two different types of missing sources are encountered in our model: one can be explained by potential outcome framework; the other is caused by the prevalent sampling scheme. Statistical analysis without adjusting bias from both sources of missingness will lead to biased results in causal inference. The proposed methods were partly motivated by and applied to the Surveillance, Epidemiology, and End Results (SEER)-Medicare linked data for women diagnosed with breast cancer.

摘要

本文开发了半参数方法,用于从现患生存数据中估计倾向得分和因果生存函数。当采用现患抽样来收集失效时间时,就会出现分析问题,结果是由于协变量与失效时间的关联,它们并未被完全观察到。所提出的估计倾向得分的程序具有一些有趣的特征,类似于病例对照研究中的似然公式,但在我们的案例中,需要对截距项进行额外考虑。结果表明,在逻辑回归设置中,通过对截距项进行特定调整的标准估计程序,可以获得校正后的倾向得分。对于因果估计,在我们的模型中会遇到两种不同类型的缺失来源:一种可以通过潜在结果框架来解释;另一种是由现患抽样方案导致的。如果不调整来自这两种缺失来源的偏差进行统计分析,将会导致因果推断中的结果出现偏差。所提出的方法部分受到了监测、流行病学和最终结果(SEER)-医疗保险链接数据的启发,并应用于该数据,这些数据来自被诊断患有乳腺癌的女性。

相似文献

7
Estimating incident population distribution from prevalent data.根据现患数据估计发病群体分布。
Biometrics. 2012 Jun;68(2):521-31. doi: 10.1111/j.1541-0420.2011.01708.x. Epub 2012 Feb 7.

引用本文的文献

1
Doubly robust estimation under covariate-induced dependent left truncation.协变量诱导的相依左截断下的双稳健估计
Biometrika. 2024 Feb 10;111(3):789-808. doi: 10.1093/biomet/asae005. eCollection 2024 Sep.

本文引用的文献

9
Invited commentary: propensity scores.特邀评论:倾向评分
Am J Epidemiol. 1999 Aug 15;150(4):327-33. doi: 10.1093/oxfordjournals.aje.a010011.
10
Estimating causal effects from large data sets using propensity scores.使用倾向得分从大型数据集中估计因果效应。
Ann Intern Med. 1997 Oct 15;127(8 Pt 2):757-63. doi: 10.7326/0003-4819-127-8_part_2-199710151-00064.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验