Suppr超能文献

氮调节因子I(NRI)-磷酸盐对大肠杆菌中谷氨酰胺合成酶基因(glnA)转录的激活作用:NRI-磷酸盐与RNA聚合酶之间存在长程物理相互作用的证据

Activation of glnA transcription by nitrogen regulator I (NRI)-phosphate in Escherichia coli: evidence for a long-range physical interaction between NRI-phosphate and RNA polymerase.

作者信息

Reitzer L J, Movsas B, Magasanik B

机构信息

Department of Molecular and Cell Biology, University of Texas, Dallas,Richardson 75083-0688.

出版信息

J Bacteriol. 1989 Oct;171(10):5512-22. doi: 10.1128/jb.171.10.5512-5522.1989.

Abstract

Growth of cells of Escherichia coli in nitrogen-limited medium induces the formation of glutamine synthetase, product of the glnA gene, and of other proteins that facilitate the assimilation of nitrogen-containing compounds. Transcription from the glnAp2 promoter of the glnALG operon requires the phosphorylation of nitrogen regulator I (NRI) and, for optimal transcription, the binding of NRI-phosphate to two sites that can be over 1,000 base pairs from the binding site for RNA polymerase. In other procaryotic genes, placement of an activator-binding site further upstream from the start site of transcription diminishes expression. To determine how NRI-phosphate activates transcription and why NRI-dependent transcription differs from activation in other systems, we constructed recombinant plasmids with small alterations between the binding sites for NRI-phosphate and RNA polymerase and between the two high-affinity NRI-binding sites. We demonstrate that tightly bound NRI-phosphate activated transcription from either side of the DNA helix when at least 30 base pairs separated NRI-phosphate from RNA polymerase. In contrast, activation from a partial NRI-binding site was effective only from one side of the DNA. We also observed that glnA expression was optimal when the two high-affinity NRI-binding sites were on the same side of the DNA helix. We explain these results on the basis of a hypothesis that a contact between RNA polymerase and NRI-phosphate bound to an upstream site determines the rate of glnA transcription.

摘要

在氮限制培养基中,大肠杆菌细胞的生长会诱导谷氨酰胺合成酶(glnA基因的产物)以及其他有助于含氮化合物同化的蛋白质的形成。glnALG操纵子的glnAp2启动子的转录需要氮调节因子I(NRI)的磷酸化,并且为了实现最佳转录,磷酸化的NRI需要与两个位点结合,这两个位点距离RNA聚合酶的结合位点可能超过1000个碱基对。在其他原核基因中,将激活剂结合位点放置在转录起始位点上游更远的位置会降低表达。为了确定磷酸化的NRI如何激活转录以及为什么NRI依赖的转录与其他系统中的激活不同,我们构建了重组质粒,这些质粒在磷酸化的NRI与RNA聚合酶的结合位点之间以及两个高亲和力的NRI结合位点之间有微小改变。我们证明,当磷酸化的NRI与RNA聚合酶之间至少相隔30个碱基对时,紧密结合的磷酸化NRI可从DNA螺旋的任一侧激活转录。相比之下,部分NRI结合位点的激活仅在DNA的一侧有效。我们还观察到,当两个高亲和力的NRI结合位点位于DNA螺旋的同一侧时,glnA的表达最佳。我们基于这样一个假设来解释这些结果,即RNA聚合酶与结合在上游位点的磷酸化NRI之间的接触决定了glnA转录的速率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0123/210391/e359a8a7dd72/jbacter00176-0287-a.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验