Department of Neuroscience, Physiology & Pharmacology, University College London, London, United Kingdom.
Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; NeuroLinx Research Institute, La Jolla, California, United States of America.
PLoS Comput Biol. 2015 Feb 26;11(2):e1004036. doi: 10.1371/journal.pcbi.1004036. eCollection 2015 Feb.
Glucose is the main energy substrate in the adult brain under normal conditions. Accumulating evidence, however, indicates that lactate produced in astrocytes (a type of glial cell) can also fuel neuronal activity. The quantitative aspects of this so-called astrocyte-neuron lactate shuttle (ANLS) are still debated. To address this question, we developed a detailed biophysical model of the brain's metabolic interactions. Our model integrates three modeling approaches, the Buxton-Wang model of vascular dynamics, the Hodgkin-Huxley formulation of neuronal membrane excitability and a biophysical model of metabolic pathways. This approach provides a template for large-scale simulations of the neuron-glia-vasculature (NGV) ensemble, and for the first time integrates the respective timescales at which energy metabolism and neuronal excitability occur. The model is constrained by relative neuronal and astrocytic oxygen and glucose utilization, by the concentration of metabolites at rest and by the temporal dynamics of NADH upon activation. These constraints produced four observations. First, a transfer of lactate from astrocytes to neurons emerged in response to activity. Second, constrained by activity-dependent NADH transients, neuronal oxidative metabolism increased first upon activation with a subsequent delayed astrocytic glycolysis increase. Third, the model correctly predicted the dynamics of extracellular lactate and oxygen as observed in vivo in rats. Fourth, the model correctly predicted the temporal dynamics of tissue lactate, of tissue glucose and oxygen consumption, and of the BOLD signal as reported in human studies. These findings not only support the ANLS hypothesis but also provide a quantitative mathematical description of the metabolic activation in neurons and glial cells, as well as of the macroscopic measurements obtained during brain imaging.
在正常情况下,葡萄糖是成人大脑的主要能量底物。然而,越来越多的证据表明,星形胶质细胞(一种神经胶质细胞)产生的乳酸也可以为神经元活动提供燃料。这种所谓的星形胶质细胞-神经元乳酸穿梭(ANLS)的定量方面仍存在争议。为了解决这个问题,我们开发了一个详细的大脑代谢相互作用的生物物理模型。我们的模型整合了三种建模方法,即血管动力学的 Buxton-Wang 模型、神经元膜兴奋性的 Hodgkin-Huxley 公式和代谢途径的生物物理模型。这种方法为神经元-神经胶质-血管(NGV)整体的大规模模拟提供了模板,并首次整合了能量代谢和神经元兴奋性发生的各自时间尺度。该模型受到神经元和星形胶质细胞相对耗氧量和耗糖量、静息状态下代谢物浓度以及激活时 NADH 的时间动态的限制。这些限制产生了四个观察结果。首先,在活动的刺激下,星形胶质细胞中的乳酸向神经元转移。其次,受 NADH 瞬变的活动依赖性限制,神经元的氧化代谢首先在激活时增加,随后星形胶质细胞的糖酵解增加。第三,该模型正确预测了在大鼠体内观察到的细胞外乳酸和氧的动力学。第四,该模型正确预测了组织中乳酸、葡萄糖和氧消耗的时间动态,以及在人类研究中报告的 BOLD 信号的时间动态。这些发现不仅支持了 ANLS 假说,还提供了对神经元和神经胶质细胞代谢激活以及在大脑成像过程中获得的宏观测量的定量数学描述。