Suppr超能文献

使用纵向高维基因组数据预测有序响应的正则化方法。

Regularization method for predicting an ordinal response using longitudinal high-dimensional genomic data.

作者信息

Hou Jiayi, Archer Kellie J

出版信息

Stat Appl Genet Mol Biol. 2015 Feb;14(1):93-111. doi: 10.1515/sagmb-2014-0004.

Abstract

Abstract An ordinal scale is commonly used to measure health status and disease related outcomes in hospital settings as well as in translational medical research. In addition, repeated measurements are common in clinical practice for tracking and monitoring the progression of complex diseases. Classical methodology based on statistical inference, in particular, ordinal modeling has contributed to the analysis of data in which the response categories are ordered and the number of covariates (p) remains smaller than the sample size (n). With the emergence of genomic technologies being increasingly applied for more accurate diagnosis and prognosis, high-dimensional data where the number of covariates (p) is much larger than the number of samples (n), are generated. To meet the emerging needs, we introduce our proposed model which is a two-stage algorithm: Extend the generalized monotone incremental forward stagewise (GMIFS) method to the cumulative logit ordinal model; and combine the GMIFS procedure with the classical mixed-effects model for classifying disease status in disease progression along with time. We demonstrate the efficiency and accuracy of the proposed models in classification using a time-course microarray dataset collected from the Inflammation and the Host Response to Injury study.

摘要

摘要 顺序量表常用于测量医院环境以及转化医学研究中的健康状况和疾病相关结局。此外,重复测量在临床实践中很常见,用于跟踪和监测复杂疾病的进展。基于统计推断的经典方法,特别是顺序建模,有助于分析响应类别有序且协变量数量(p)小于样本量(n)的数据。随着基因组技术越来越多地用于更准确的诊断和预后,产生了协变量数量(p)远大于样本数量(n)的高维数据。为满足新出现的需求,我们介绍了我们提出的模型,它是一种两阶段算法:将广义单调递增前向逐步(GMIFS)方法扩展到累积对数序贯模型;并将GMIFS程序与经典混合效应模型相结合,用于在疾病随时间进展过程中对疾病状态进行分类。我们使用从炎症与宿主对损伤的反应研究中收集的时间进程微阵列数据集,证明了所提出模型在分类中的效率和准确性。

相似文献

2
Modeling discrete survival time using genomic feature data.使用基因组特征数据对离散生存时间进行建模。
Cancer Inform. 2015 Mar 2;14(Suppl 2):37-43. doi: 10.4137/CIN.S17275. eCollection 2015.

本文引用的文献

2
Statistical Learning Methods for Longitudinal High-dimensional Data.纵向高维数据的统计学习方法
Wiley Interdiscip Rev Comput Stat. 2014 Jan;6(1):10-18. doi: 10.1002/wics.1282.
3
VARIABLE SELECTION IN LINEAR MIXED EFFECTS MODELS.线性混合效应模型中的变量选择
Ann Stat. 2012 Aug 1;40(4):2043-2068. doi: 10.1214/12-AOS1028.
5
Renal dysfunction in burns: a review.烧伤中的肾功能障碍:综述
Ann Burns Fire Disasters. 2013 Mar 31;26(1):16-25.
7
Classification of patients from time-course gene expression.基于时间进程基因表达的患者分类。
Biostatistics. 2013 Jan;14(1):87-98. doi: 10.1093/biostatistics/kxs027. Epub 2012 Aug 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验