Nass Karol, Foucar Lutz, Barends Thomas R M, Hartmann Elisabeth, Botha Sabine, Shoeman Robert L, Doak R Bruce, Alonso-Mori Roberto, Aquila Andrew, Bajt Saša, Barty Anton, Bean Richard, Beyerlein Kenneth R, Bublitz Maike, Drachmann Nikolaj, Gregersen Jonas, Jönsson H Olof, Kabsch Wolfgang, Kassemeyer Stephan, Koglin Jason E, Krumrey Michael, Mattle Daniel, Messerschmidt Marc, Nissen Poul, Reinhard Linda, Sitsel Oleg, Sokaras Dimosthenis, Williams Garth J, Hau-Riege Stefan, Timneanu Nicusor, Caleman Carl, Chapman Henry N, Boutet Sébastien, Schlichting Ilme
Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, D-69120 Heidelberg, Germany.
SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA.
J Synchrotron Radiat. 2015 Mar;22(2):225-38. doi: 10.1107/S1600577515002349. Epub 2015 Feb 17.
Proteins that contain metal cofactors are expected to be highly radiation sensitive since the degree of X-ray absorption correlates with the presence of high-atomic-number elements and X-ray energy. To explore the effects of local damage in serial femtosecond crystallography (SFX), Clostridium ferredoxin was used as a model system. The protein contains two [4Fe-4S] clusters that serve as sensitive probes for radiation-induced electronic and structural changes. High-dose room-temperature SFX datasets were collected at the Linac Coherent Light Source of ferredoxin microcrystals. Difference electron density maps calculated from high-dose SFX and synchrotron data show peaks at the iron positions of the clusters, indicative of decrease of atomic scattering factors due to ionization. The electron density of the two [4Fe-4S] clusters differs in the FEL data, but not in the synchrotron data. Since the clusters differ in their detailed architecture, this observation is suggestive of an influence of the molecular bonding and geometry on the atomic displacement dynamics following initial photoionization. The experiments are complemented by plasma code calculations.
含有金属辅因子的蛋白质预计对辐射高度敏感,因为X射线吸收程度与高原子序数元素的存在及X射线能量相关。为了探究串行飞秒晶体学(SFX)中局部损伤的影响,以梭菌铁氧化还原蛋白作为模型系统。该蛋白质含有两个[4Fe-4S]簇,可作为辐射诱导的电子和结构变化的敏感探针。在直线加速器相干光源处收集了铁氧化还原蛋白微晶的高剂量室温SFX数据集。由高剂量SFX和同步加速器数据计算得到的差分电子密度图在簇的铁位置处显示出峰值,表明由于电离导致原子散射因子降低。在自由电子激光(FEL)数据中,两个[4Fe-4S]簇的电子密度不同,但在同步加速器数据中则没有差异。由于这些簇的详细结构不同,这一观察结果表明分子键合和几何结构对初始光电离后原子位移动力学有影响。这些实验通过等离子体代码计算得到补充。