Suppr超能文献

神经影像学中的对抗还是包容多元性?邻域优势与全局校准。

Fighting or embracing multiplicity in neuroimaging? neighborhood leverage versus global calibration.

机构信息

Scientific and Statistical Computing Core, National Institute of Mental Health, USA.

Scientific and Statistical Computing Core, National Institute of Mental Health, USA.

出版信息

Neuroimage. 2020 Feb 1;206:116320. doi: 10.1016/j.neuroimage.2019.116320. Epub 2019 Nov 5.

Abstract

Neuroimaging faces the daunting challenge of multiple testing - an instance of multiplicity - that is associated with two other issues to some extent: low inference efficiency and poor reproducibility. Typically, the same statistical model is applied to each spatial unit independently in the approach of massively univariate modeling. In dealing with multiplicity, the general strategy employed in the field is the same regardless of the specifics: trust the local "unbiased" effect estimates while adjusting the extent of statistical evidence at the global level. However, in this approach, modeling efficiency is compromised because each spatial unit (e.g., voxel, region, matrix element) is treated as an isolated and independent entity during massively univariate modeling. In addition, the required step of multiple testing "correction" by taking into consideration spatial relatedness, or neighborhood leverage, can only partly recoup statistical efficiency, resulting in potentially excessive penalization as well as arbitrariness due to thresholding procedures. Moreover, the assigned statistical evidence at the global level heavily relies on the data space (whole brain or a small volume). The present paper reviews how Stein's paradox (1956) motivates a Bayesian multilevel (BML) approach that, rather than fighting multiplicity, embraces it to our advantage through a global calibration process among spatial units. Global calibration is accomplished via a Gaussian distribution for the cross-region effects whose properties are not a priori specified, but a posteriori determined by the data at hand through the BML model. Our framework therefore incorporates multiplicity as integral to the modeling structure, not a separate correction step. By turning multiplicity into a strength, we aim to achieve five goals: 1) improve the model efficiency with a higher predictive accuracy, 2) control the errors of incorrect magnitude and incorrect sign, 3) validate each model relative to competing candidates, 4) reduce the reliance and sensitivity on the choice of data space, and 5) encourage full results reporting. Our modeling proposal reverberates with recent proposals to eliminate the dichotomization of statistical evidence ("significant" vs. "non-significant"), to improve the interpretability of study findings, as well as to promote reporting the full gamut of results (not only "significant" ones), thereby enhancing research transparency and reproducibility.

摘要

神经影像学面临着多重测试的艰巨挑战——这是多重性的一个实例——在某种程度上与另外两个问题有关:低推断效率和较差的可重复性。通常,在大规模单变量建模方法中,相同的统计模型被独立应用于每个空间单元。在处理多重性时,无论具体情况如何,该领域采用的一般策略都是相同的:在全局水平上调整统计证据的程度,同时信任局部的“无偏”效应估计。然而,在这种方法中,建模效率受到了损害,因为在大规模单变量建模过程中,每个空间单元(例如,体素、区域、矩阵元素)都被视为孤立和独立的实体。此外,通过考虑空间相关性或邻域影响力来进行多重测试“校正”的必要步骤,只能部分恢复统计效率,从而导致由于阈值处理程序而产生潜在的过度惩罚和任意性。此外,全局水平上分配的统计证据在很大程度上依赖于数据空间(整个大脑或小体积)。本文回顾了 Stein 悖论(1956 年)如何激发了贝叶斯多层次(BML)方法,该方法不是与多重性作斗争,而是通过空间单元之间的全局校准过程来利用它为我们带来优势。全局校准是通过对跨区域效应的高斯分布来完成的,该分布的性质不是先验指定的,而是通过 BML 模型根据手头的数据后验确定的。因此,我们的框架将多重性纳入建模结构中,而不是作为单独的校正步骤。通过将多重性转化为优势,我们旨在实现五个目标:1)提高模型效率,提高预测准确性,2)控制错误的大小和符号错误,3)相对于竞争候选模型验证每个模型,4)减少对数据空间选择的依赖和敏感性,5)鼓励充分报告结果。我们的建模方案与最近提出的消除统计证据的二分法(“显著”与“非显著”)的方案、提高研究结果可解释性的方案以及促进报告结果的全部范围(不仅是“显著”的结果)的方案相呼应,从而提高了研究的透明度和可重复性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2fd4/6980934/5701bb6f8156/nihms-1062329-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验