Boehm Ryan D, Daniels Justin, Stafslien Shane, Nasir Adnan, Lefebvre Joe, Narayan Roger J
Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Box 7115, Raleigh, North Carolina 27695.
Center for Nanoscale Science and Engineering, North Dakota State University, 1805 Research Park Drive, Fargo, North Dakota 58102.
Biointerphases. 2015 Mar 2;10(1):011004. doi: 10.1116/1.4913378.
In this study, the authors examined use of piezoelectric inkjet printing to apply an antifungal agent, voriconazole, to the surfaces of biodegradable polyglycolic acid microneedles. Polyglycolic acid microneedles with sharp tips (average tip radius = 25 ± 3 μm) were prepared using a combination of injection molding and drawing lithography. The elastic modulus (9.9 ± 0.3 GPa) and hardness (588.2 ± 33.8 MPa) values of the polyglycolic acid material were determined using nanoindentation and were found to be suitable for use in transdermal drug delivery devices. Voriconazole was deposited onto the polyglycolic acid microneedles by means of piezoelectric inkjet printing. It should be noted that voriconazole has poor solubility in water; however, it is readily soluble in many organic solvents. Optical imaging, scanning electron microscopy, energy dispersive x-ray spectrometry, and Fourier transform infrared spectroscopy were utilized to examine the microneedle geometries and inkjet-deposited surface coatings. Furthermore, an in vitro agar plating study was performed on the unmodified, vehicle-modified, and voriconazole-modified microneedles. Unlike the unmodified and vehicle-modified microneedles, the voriconazole-modified microneedles showed antifungal activity against Candida albicans. The unmodified, vehicle-modified, and voriconazole-modified microneedles did not show activity against Escherichia coli, Pseudomonas aeruginosa, or Staphylococcus aureus. The results indicate that piezoelectric inkjet printing may be useful for loading transdermal drug delivery devices such as polyglycolic acid microneedles with antifungal pharmacologic agents and other pharmacologic agents with poor solubility in aqueous solutions.
在本研究中,作者考察了使用压电喷墨打印技术将抗真菌剂伏立康唑应用于可生物降解聚乙醇酸微针表面的情况。采用注射成型和拉伸光刻相结合的方法制备了尖端尖锐(平均尖端半径 = 25 ± 3μm)的聚乙醇酸微针。使用纳米压痕法测定了聚乙醇酸材料的弹性模量(9.9 ± 0.3 GPa)和硬度(588.2 ± 33.8 MPa),发现其适用于透皮给药装置。通过压电喷墨打印将伏立康唑沉积到聚乙醇酸微针上。应当指出的是,伏立康唑在水中的溶解度较差;然而,它易溶于许多有机溶剂。利用光学成像、扫描电子显微镜、能量色散X射线光谱法和傅里叶变换红外光谱法来检查微针的几何形状和喷墨沉积的表面涂层。此外,对未修饰、赋形剂修饰和伏立康唑修饰的微针进行了体外琼脂平板培养研究。与未修饰和赋形剂修饰的微针不同,伏立康唑修饰的微针显示出对白色念珠菌的抗真菌活性。未修饰、赋形剂修饰和伏立康唑修饰的微针对大肠杆菌、铜绿假单胞菌或金黄色葡萄球菌均未显示出活性。结果表明,压电喷墨打印技术可能有助于将抗真菌药物和其他在水溶液中溶解度较差的药物加载到聚乙醇酸微针等透皮给药装置中。