Suppr超能文献

通过 STDP 在皮质微电路模型中产生动态记忆痕迹。

Emergence of dynamic memory traces in cortical microcircuit models through STDP.

机构信息

Institute for Theoretical Computer Science, Graz University of Technology, Graz, Austria.

出版信息

J Neurosci. 2013 Jul 10;33(28):11515-29. doi: 10.1523/JNEUROSCI.5044-12.2013.

Abstract

Numerous experimental data suggest that simultaneously or sequentially activated assemblies of neurons play a key role in the storage and computational use of long-term memory in the brain. However, a model that elucidates how these memory traces could emerge through spike-timing-dependent plasticity (STDP) has been missing. We show here that stimulus-specific assemblies of neurons emerge automatically through STDP in a simple cortical microcircuit model. The model that we consider is a randomly connected network of well known microcircuit motifs: pyramidal cells with lateral inhibition. We show that the emergent assembly codes for repeatedly occurring spatiotemporal input patterns tend to fire in some loose, sequential manner that is reminiscent of experimentally observed stereotypical trajectories of network states. We also show that the emergent assembly codes add an important computational capability to standard models for online computations in cortical microcircuits: the capability to integrate information from long-term memory with information from novel spike inputs.

摘要

大量实验数据表明,神经元的同时或顺序激活组装在大脑中长期记忆的存储和计算使用中起着关键作用。然而,阐明这些记忆痕迹如何通过尖峰时间依赖可塑性(STDP)出现的模型一直缺失。我们在这里展示,通过一个简单的皮质微电路模型中的 STDP,神经元的刺激特异性组装自动出现。我们考虑的模型是一个具有已知微电路模式的随机连接网络:具有侧向抑制的锥体细胞。我们表明,新兴的组装代码为反复出现的时空输入模式倾向于以某种松散的、顺序的方式发射,这让人联想到实验观察到的网络状态的典型轨迹。我们还表明,新兴的组装代码为皮质微电路中的在线计算的标准模型添加了一个重要的计算能力:将长期记忆中的信息与新的尖峰输入中的信息整合的能力。

相似文献

6
Autonomous emergence of connectivity assemblies via spike triplet interactions.通过尖峰三重相互作用自主出现连接组装体。
PLoS Comput Biol. 2020 May 8;16(5):e1007835. doi: 10.1371/journal.pcbi.1007835. eCollection 2020 May.
7
A computational framework for cortical learning.一种用于皮层学习的计算框架。
Biol Cybern. 2004 Jun;90(6):400-9. doi: 10.1007/s00422-004-0487-1. Epub 2004 Jul 22.

引用本文的文献

1
Balanced state of networks of winner-take-all units.赢者通吃单元网络的平衡状态
PLoS Comput Biol. 2025 Jun 11;21(6):e1013081. doi: 10.1371/journal.pcbi.1013081. eCollection 2025 Jun.
6
Sequence learning, prediction, and replay in networks of spiking neurons.脉冲神经元网络中的序列学习、预测和重放。
PLoS Comput Biol. 2022 Jun 21;18(6):e1010233. doi: 10.1371/journal.pcbi.1010233. eCollection 2022 Jun.
10
Learning poly-synaptic paths with traveling waves.用行波学习多突触通路。
PLoS Comput Biol. 2021 Feb 9;17(2):e1008700. doi: 10.1371/journal.pcbi.1008700. eCollection 2021 Feb.

本文引用的文献

2
Emergence of optimal decoding of population codes through STDP.通过 STDP 实现群体编码的最优解码的出现。
Neural Comput. 2013 Jun;25(6):1371-407. doi: 10.1162/NECO_a_00446. Epub 2013 Mar 21.
10
Activity recall in a visual cortical ensemble.视觉皮层神经元集群中的活动记忆。
Nat Neurosci. 2012 Jan 22;15(3):449-55, S1-2. doi: 10.1038/nn.3036.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验