Institute for Theoretical Computer Science, Graz University of Technology, Graz, Austria.
J Neurosci. 2013 Jul 10;33(28):11515-29. doi: 10.1523/JNEUROSCI.5044-12.2013.
Numerous experimental data suggest that simultaneously or sequentially activated assemblies of neurons play a key role in the storage and computational use of long-term memory in the brain. However, a model that elucidates how these memory traces could emerge through spike-timing-dependent plasticity (STDP) has been missing. We show here that stimulus-specific assemblies of neurons emerge automatically through STDP in a simple cortical microcircuit model. The model that we consider is a randomly connected network of well known microcircuit motifs: pyramidal cells with lateral inhibition. We show that the emergent assembly codes for repeatedly occurring spatiotemporal input patterns tend to fire in some loose, sequential manner that is reminiscent of experimentally observed stereotypical trajectories of network states. We also show that the emergent assembly codes add an important computational capability to standard models for online computations in cortical microcircuits: the capability to integrate information from long-term memory with information from novel spike inputs.
大量实验数据表明,神经元的同时或顺序激活组装在大脑中长期记忆的存储和计算使用中起着关键作用。然而,阐明这些记忆痕迹如何通过尖峰时间依赖可塑性(STDP)出现的模型一直缺失。我们在这里展示,通过一个简单的皮质微电路模型中的 STDP,神经元的刺激特异性组装自动出现。我们考虑的模型是一个具有已知微电路模式的随机连接网络:具有侧向抑制的锥体细胞。我们表明,新兴的组装代码为反复出现的时空输入模式倾向于以某种松散的、顺序的方式发射,这让人联想到实验观察到的网络状态的典型轨迹。我们还表明,新兴的组装代码为皮质微电路中的在线计算的标准模型添加了一个重要的计算能力:将长期记忆中的信息与新的尖峰输入中的信息整合的能力。