文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

EXT1和糖胺聚糖在丝状病毒进入早期阶段的作用。

Role of EXT1 and Glycosaminoglycans in the Early Stage of Filovirus Entry.

作者信息

O'Hearn Aileen, Wang Minxiu, Cheng Han, Lear-Rooney Calli M, Koning Katie, Rumschlag-Booms Emily, Varhegyi Elizabeth, Olinger Gene, Rong Lijun

机构信息

Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA.

U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, USA.

出版信息

J Virol. 2015 May;89(10):5441-9. doi: 10.1128/JVI.03689-14. Epub 2015 Mar 4.


DOI:10.1128/JVI.03689-14
PMID:25741008
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC4442511/
Abstract

UNLABELLED: Filoviruses, including both Ebola virus (EBOV) and Marburg virus (MARV), can infect humans and other animals, causing hemorrhagic fever with a high mortality rate. Entry of these viruses into the host is mediated by a single filoviral glycoprotein (GP). GP is composed of two subunits: GP1, which is responsible for attachment and binding to receptor(s) on susceptible cells, and GP2, which mediates viral and cell membrane fusion. Although numerous host factors have been implicated in the entry process, the initial attachment receptor(s) has not been well defined. In this report, we demonstrate that exostosin 1 (EXT1), which is involved in biosynthesis of heparan sulfate (HS), plays a role in filovirus entry. Expression knockdown of EXT1 by small interfering RNAs (siRNAs) impairs GP-mediated pseudoviral entry and that of infectious EBOV and MARV in tissue cultured cells. Furthermore, HS, heparin, and other related glycosaminoglycans (GAGs), to different extents, can bind to and block GP-mediated viral entry and that of infectious filoviruses. These results strongly suggest that HS and other related GAGs are attachment receptors that are utilized by filoviruses for entry and infection. These GAGs may have therapeutic potential in treating EBOV- and MARV-infected patients. IMPORTANCE: Infection by Ebola virus and Marburg virus can cause severe illness in humans, with a high mortality rate, and currently there is no FDA-approved vaccine or therapeutic treatment available. The ongoing 2014 outbreak in West Africa underscores a lack of our understanding in the infection and pathogenesis of these viruses and the urgency of drug discovery and development. In this study, we provide several pieces of evidence that demonstrate that heparan sulfate and other closely related glycosaminoglycans are the molecules that are used by filoviruses for initial attachment. Furthermore, we demonstrate that these glycosaminoglycans can block entry of and infection by filoviruses. Thus, this work provides mechanistic insights on the early step of filoviral infection and suggests a possible therapeutic option for diseases caused by filovirus infection.

摘要

未标记:丝状病毒,包括埃博拉病毒(EBOV)和马尔堡病毒(MARV),可感染人类和其他动物,引发死亡率很高的出血热。这些病毒进入宿主是由单一的丝状病毒糖蛋白(GP)介导的。GP由两个亚基组成:GP1负责与易感细胞上的受体结合,GP2介导病毒与细胞膜融合。尽管众多宿主因子与进入过程有关,但最初的附着受体尚未明确界定。在本报告中,我们证明参与硫酸乙酰肝素(HS)生物合成的外切糖苷酶1(EXT1)在丝状病毒进入过程中起作用。通过小干扰RNA(siRNA)敲低EXT1的表达会损害GP介导的假病毒进入以及组织培养细胞中传染性埃博拉病毒和马尔堡病毒的进入。此外,HS、肝素和其他相关糖胺聚糖(GAG)在不同程度上可结合并阻断GP介导的病毒进入以及传染性丝状病毒的进入。这些结果强烈表明,HS和其他相关GAG是丝状病毒用于进入和感染的附着受体。这些GAG在治疗埃博拉病毒和马尔堡病毒感染患者方面可能具有治疗潜力。 重要性:埃博拉病毒和马尔堡病毒感染可导致人类严重疾病,死亡率很高,目前尚无美国食品药品监督管理局批准的疫苗或治疗方法。2014年在西非爆发的疫情凸显了我们对这些病毒的感染和发病机制缺乏了解以及药物研发的紧迫性。在本研究中,我们提供了几条证据,证明硫酸乙酰肝素和其他密切相关的糖胺聚糖是丝状病毒用于初始附着的分子。此外,我们证明这些糖胺聚糖可阻断丝状病毒的进入和感染。因此,这项工作为丝状病毒感染的早期步骤提供了机制性见解,并为丝状病毒感染引起的疾病提出了一种可能的治疗选择。

相似文献

[1]
Role of EXT1 and Glycosaminoglycans in the Early Stage of Filovirus Entry.

J Virol. 2015-5

[2]
Inhibition of Ebola and Marburg Virus Entry by G Protein-Coupled Receptor Antagonists.

J Virol. 2015-10

[3]
Interaction between TIM-1 and NPC1 Is Important for Cellular Entry of Ebola Virus.

J Virol. 2015-6

[4]
A biaryl sulfonamide derivative as a novel inhibitor of filovirus infection.

Antiviral Res. 2020-11

[5]
Filoviruses Use the HOPS Complex and UVRAG To Traffic to Niemann-Pick C1 Compartments during Viral Entry.

J Virol. 2020-7-30

[6]
Characterization of the Filovirus-Resistant Cell Line SH-SY5Y Reveals Redundant Role of Cell Surface Entry Factors.

Viruses. 2019-3-19

[7]
A Diacylglycerol Kinase Inhibitor, R-59-022, Blocks Filovirus Internalization in Host Cells.

Viruses. 2019-3-1

[8]
Lethality and pathogenesis of airborne infection with filoviruses in A129 α/β -/- interferon receptor-deficient mice.

J Med Microbiol. 2011-8-18

[9]
Identification of filovirus entry inhibitors targeting the endosomal receptor NPC1 binding site.

Antiviral Res. 2021-5

[10]
The Tetherin Antagonism of the Ebola Virus Glycoprotein Requires an Intact Receptor-Binding Domain and Can Be Blocked by GP1-Specific Antibodies.

J Virol. 2016-11-28

引用本文的文献

[1]
Small molecule drug discovery for Ebola virus disease.

RSC Med Chem. 2025-8-6

[2]
Pathogens that infect mammalian cells via sulfonated glycosaminoglycans.

Front Cell Infect Microbiol. 2025-6-10

[3]
Cellular SLC35B4 promotes internalization during influenza A virus entry.

mBio. 2025-5-14

[4]
Receptor-binding proteins from animal viruses are broadly compatible with human cell entry factors.

Nat Microbiol. 2025-2

[5]
Guardians at the Gate: Optimization of Small Molecule Entry Inhibitors of Ebola and Marburg Viruses.

J Med Chem. 2025-1-9

[6]
N-Substituted Pyrrole-Based Heterocycles as Broad-Spectrum Filoviral Entry Inhibitors.

J Med Chem. 2024-8-22

[7]
Molecular determinants of cross-species transmission in emerging viral infections.

Microbiol Mol Biol Rev. 2024-9-26

[8]
Single-cell image-based genetic screens systematically identify regulators of Ebola virus subcellular infection dynamics.

bioRxiv. 2024-4-7

[9]
Archaic connectivity between the sulfated heparan sulfate and the herpesviruses - An evolutionary potential for cross-species interactions.

Comput Struct Biotechnol J. 2023-1-13

[10]
Repurposing of berbamine hydrochloride to inhibit Ebola virus by targeting viral glycoprotein.

Acta Pharm Sin B. 2022-12

本文引用的文献

[1]
Reversion of advanced Ebola virus disease in nonhuman primates with ZMapp.

Nature. 2014-8-29

[2]
Protection against filovirus diseases by a novel broad-spectrum nucleoside analogue BCX4430.

Nature. 2014-3-2

[3]
Filoviruses utilize glycosaminoglycans for their attachment to target cells.

J Virol. 2013-1-9

[4]
Heparan sulfate facilitates Rift Valley fever virus entry into the cell.

J Virol. 2012-9-26

[5]
Ebola virus entry requires the host-programmed recognition of an intracellular receptor.

EMBO J. 2012-3-6

[6]
Residue Y161 of influenza virus hemagglutinin is involved in viral recognition of sialylated complexes from different hosts.

J Virol. 2012-2-1

[7]
Basic clinical and laboratory features of filoviral hemorrhagic fever.

J Infect Dis. 2011-11

[8]
Filovirus hemorrhagic fever outbreak case management: a review of current and future treatment options.

J Infect Dis. 2011-11

[9]
Ebola virus entry requires the cholesterol transporter Niemann-Pick C1.

Nature. 2011-8-24

[10]
Small molecule inhibitors reveal Niemann-Pick C1 is essential for Ebola virus infection.

Nature. 2011-8-24

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索