Barbeau Damien, Lutier Simon, Bonneterre Vincent, Persoons Renaud, Marques Marie, Herve Claire, Maitre Anne
Equipe Environnement et Prédiction de la Santé des Populations, Laboratoire TIMC-IMAG, UMR CNRS 5525, Université Joseph Fourier - Grenoble 1, Faculté de Médecine, Domaine de la Merci, 38700, La Tronche, France.
Laboratoire de Toxicologie Professionnelle et Environnementale, DBTP, IBP, CHU de Grenoble, CS 10217, Grenoble, 38043, France.
Int Arch Occup Environ Health. 2015 Nov;88(8):1119-29. doi: 10.1007/s00420-015-1042-1. Epub 2015 Mar 6.
Occupational exposure to polycyclic aromatic hydrocarbons (PAHs) can be assessed by either air monitoring or biomonitoring using urinary 1-hydroxypyrene (1-OHP) or 3-hydroxybenzo(a)pyrene (3-OHBaP). The aim of this study was to understand the links between atmospheric PAHs and urinary metabolites, in order to improve the biomonitoring strategy for assessing carcinogenic risk.
Personal air sampling for pyrene and BaP measurements, and urines for 1-OHP and 3-OHBaP analyses of seven workers from electrode production plant were collected every day of the working week.
High variability of atmospheric levels between activities and between days was observed, especially for gaseous pyrene. No correlation was found between urinary metabolites: 1-OHP maximum levels occurred for "electrode extrusion" activity; those of 3-OHBaP occurred for "raw materials dispatcher." Sixty percentage of 3-OHBaP maximum levels were observed in urines collected at the beginning of shift the last workday. Those of 1-OHP occurred at different sampling times, depending on the gaseous pyrene levels (not stopped by P3 respirators). Dermal absorption of PAHs was confirmed by significant effect of particulate pyrene on 1-OHP in the samples collected the morning of the following day (p < 0.02, n = 25).
Lack of correlation between metabolites concentrations emphasizes the non-relevance of 1-OHP, from a non-carcinogenic gaseous and particulate compound, and the great interest of 3-OHBaP, from carcinogenic BaP. Its slower urinary elimination prevents the risk of exposure underestimation, and urinary analysis should be performed at the beginning of shift the end of working week, especially in case of high exposure variability.
职业性多环芳烃(PAHs)暴露可通过空气监测或生物监测来评估,生物监测采用尿中1-羟基芘(1-OHP)或3-羟基苯并(a)芘(3-OHBaP)。本研究的目的是了解大气中PAHs与尿代谢物之间的联系,以改进评估致癌风险的生物监测策略。
在工作周的每一天,收集来自电极生产厂的7名工人的个人空气样本用于芘和苯并(a)芘测量,以及尿液样本用于1-OHP和3-OHBaP分析。
观察到不同活动和不同日期之间大气水平的高度变异性,尤其是气态芘。尿代谢物之间未发现相关性:“电极挤压”活动时1-OHP出现最高水平;“原材料调度员”活动时3-OHBaP出现最高水平。在最后工作日轮班开始时收集的尿液中观察到60%的3-OHBaP最高水平。1-OHP的最高水平出现在不同的采样时间,取决于气态芘水平(未被P3呼吸器阻断)。第二天早晨收集的样本中,颗粒态芘对1-OHP有显著影响,证实了PAHs的皮肤吸收(p < 0.02,n = 25)。
代谢物浓度之间缺乏相关性强调了来自非致癌气态和颗粒态化合物的1-OHP的不相关性,以及来自致癌性苯并(a)芘的3-OHBaP的重大意义。其较慢的尿排泄可防止暴露风险被低估,并且尿分析应在工作周结束时轮班开始时进行,特别是在暴露变异性较高的情况下。