Department of Industrial and Systems Engineering, College of Engineering,Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
Department of Computer Science, College of Science & Art at Mahayil, King Khalid University, Saudi Arabia.
J Healthc Eng. 2022 Mar 24;2022:3987494. doi: 10.1155/2022/3987494. eCollection 2022.
Brain Computer Interface (BCI) technology commonly used to enable communication for the person with movement disability. It allows the person to communicate and control assistive robots by the use of electroencephalogram (EEG) or other brain signals. Though several approaches have been available in the literature for learning EEG signal feature, the deep learning (DL) models need to further explore for generating novel representation of EEG features and accomplish enhanced outcomes for MI classification. With this motivation, this study designs an arithmetic optimization with RetinaNet based deep learning model for MI classification (AORNDL-MIC) technique on BCIs. The proposed AORNDL-MIC technique initially exploits Multiscale Principal Component Analysis (MSPCA) approach for the EEG signal denoising and Continuous Wavelet Transform (CWT) is exploited for the transformation of 1D-EEG signal into 2D time-frequency amplitude representation, which enables to utilize the DL model via transfer learning approach. In addition, the DL based RetinaNet is applied for extracting of feature vectors from the EEG signal which are then classified with the help of ID3 classifier. In order to optimize the classification efficiency of the AORNDL-MIC technique, arithmetical optimization algorithm (AOA) is employed for hyperparameter tuning of the RetinaNet. The experimental analysis of the AORNDL-MIC algorithm on the benchmark data sets reported its promising performance over the recent state of art methodologies.
脑机接口 (BCI) 技术通常用于为运动障碍患者实现通信。它允许患者通过使用脑电图 (EEG) 或其他脑信号来进行交流和控制辅助机器人。尽管文献中有几种方法可用于学习 EEG 信号特征,但深度学习 (DL) 模型需要进一步探索,以生成 EEG 特征的新表示,并为 MI 分类实现增强的结果。基于此动机,本研究设计了一种基于视网膜网的优化算法与深度学习模型的脑机接口 MI 分类 (AORNDL-MIC) 技术。所提出的 AORNDL-MIC 技术最初利用多尺度主成分分析 (MSPCA) 方法对 EEG 信号进行去噪,然后利用连续小波变换 (CWT) 将 1D-EEG 信号转换为 2D 时频幅度表示,从而能够通过迁移学习方法利用 DL 模型。此外,基于 DL 的视网膜网用于从 EEG 信号中提取特征向量,然后使用 ID3 分类器对其进行分类。为了优化 AORNDL-MIC 技术的分类效率,算术优化算法 (AOA) 用于调整视网膜网的超参数。在基准数据集上对 AORNDL-MIC 算法的实验分析表明,它在最近的先进方法方面表现出了有前景的性能。