Suppr超能文献

利用帧间和帧内先验对高速光学相干断层扫描数据进行多帧去噪

Multiframe denoising of high-speed optical coherence tomography data using interframe and intraframe priors.

作者信息

Bian Liheng, Suo Jinli, Chen Feng, Dai Qionghai

出版信息

J Biomed Opt. 2015 Mar;20(3):036006. doi: 10.1117/1.JBO.20.3.036006.

Abstract

Optical coherence tomography (OCT) is an important interferometric diagnostic technique, which provides cross-sectional views of biological tissues' subsurface microstructures. However, the imaging quality of high-speed OCT is limited by the large speckle noise. To address this problem, we propose a multiframe algorithmic method to denoise OCT volume. Mathematically, we build an optimization model which forces the temporally registered frames to be low-rank and the gradient in each frame to be sparse, under the constraints from logarithmic image formation and nonuniform noise variance. In addition, a convex optimization algorithm based on the augmented Lagrangian method is derived to solve the above model. The results reveal that our approach outperforms the other methods in terms of both speckle noise suppression and crucial detail preservation.

摘要

光学相干断层扫描(OCT)是一种重要的干涉诊断技术,可提供生物组织亚表面微观结构的横截面视图。然而,高速OCT的成像质量受大散斑噪声的限制。为解决此问题,我们提出一种多帧算法方法对OCT体数据进行去噪。在数学上,我们构建了一个优化模型,在对数图像形成和非均匀噪声方差的约束下,使时间配准的帧为低秩且每一帧中的梯度为稀疏。此外,还推导了一种基于增广拉格朗日方法的凸优化算法来求解上述模型。结果表明,我们的方法在散斑噪声抑制和关键细节保留方面均优于其他方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验