Pattern Recognition Lab, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany.
Pattern Recognition Lab, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany; e.solutions GmbH, Erlangen, Germany.
Med Image Anal. 2018 Aug;48:131-146. doi: 10.1016/j.media.2018.06.002. Epub 2018 Jun 6.
This paper introduces an universal and structure-preserving regularization term, called quantile sparse image (QuaSI) prior. The prior is suitable for denoising images from various medical imaging modalities. We demonstrate its effectiveness on volumetric optical coherence tomography (OCT) and computed tomography (CT) data, which show different noise and image characteristics. OCT offers high-resolution scans of the human retina but is inherently impaired by speckle noise. CT on the other hand has a lower resolution and shows high-frequency noise. For the purpose of denoising, we propose a variational framework based on the QuaSI prior and a Huber data fidelity model that can handle 3-D and 3-D+t data. Efficient optimization is facilitated through the use of an alternating direction method of multipliers (ADMM) scheme and the linearization of the quantile filter. Experiments on multiple datasets emphasize the excellent performance of the proposed method.
本文介绍了一种通用且结构保持的正则化项,称为分位数稀疏图像(QuaSI)先验。该先验适用于从各种医学成像模式中去噪图像。我们在体光学相干断层扫描(OCT)和计算机断层扫描(CT)数据上证明了其有效性,这些数据具有不同的噪声和图像特征。OCT 提供了人视网膜的高分辨率扫描,但固有地受到散斑噪声的影响。另一方面,CT 的分辨率较低,且显示高频噪声。为了去噪,我们提出了一种基于 QuaSI 先验和 Huber 数据保真度模型的变分框架,该框架可以处理 3-D 和 3-D+t 数据。通过使用交替方向乘子法(ADMM)方案和分位数滤波器的线性化,实现了高效的优化。在多个数据集上的实验强调了所提出方法的卓越性能。