Suppr超能文献

用于超大规模集成电路实现的心电图信号压缩算法中CS与NPC压缩算法的自适应集成

Adaptive Integration of the Compressed Algorithm of CS and NPC for the ECG Signal Compressed Algorithm in VLSI Implementation.

作者信息

Tseng Yun-Hua, Chen Yuan-Ho, Lu Chih-Wen

机构信息

Department of Engineering and System Science, National Tsing Hua University, Hsinchu 300, Taiwan.

Department of Electronic Engineering, Chang Gung University, Taoyuan 333, Taiwan.

出版信息

Sensors (Basel). 2017 Oct 9;17(10):2288. doi: 10.3390/s17102288.

Abstract

Compressed sensing (CS) is a promising approach to the compression and reconstruction of electrocardiogram (ECG) signals. It has been shown that following reconstruction, most of the changes between the original and reconstructed signals are distributed in the Q, R, and S waves (QRS) region. Furthermore, any increase in the compression ratio tends to increase the magnitude of the change. This paper presents a novel approach integrating the near-precise compressed (NPC) and CS algorithms. The simulation results presented notable improvements in signal-to-noise ratio (SNR) and compression ratio (CR). The efficacy of this approach was verified by fabricating a highly efficient low-cost chip using the Taiwan Semiconductor Manufacturing Company's (TSMC) 0.18-μm Complementary Metal-Oxide-Semiconductor (CMOS) technology. The proposed core has an operating frequency of 60 MHz and gate counts of 2.69 K.

摘要

压缩感知(CS)是一种用于心电图(ECG)信号压缩与重构的很有前景的方法。研究表明,重构后,原始信号与重构信号之间的大部分变化分布在Q、R和S波(QRS)区域。此外,压缩率的任何增加都倾向于增大变化的幅度。本文提出了一种将近精确压缩(NPC)算法和CS算法相结合的新方法。仿真结果表明,该方法在信噪比(SNR)和压缩率(CR)方面有显著提高。通过使用台积电(TSMC)的0.18μm互补金属氧化物半导体(CMOS)技术制造一种高效低成本芯片,验证了该方法的有效性。所提出的内核工作频率为60 MHz,门数为2.69 K。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/785b/5677428/386c419cdc19/sensors-17-02288-g001.jpg

相似文献

2
Adaptive Dictionary Reconstruction for Compressed Sensing of ECG Signals.
IEEE J Biomed Health Inform. 2017 May;21(3):645-654. doi: 10.1109/JBHI.2016.2531182. Epub 2016 Feb 18.
3
Energy-efficient Compressed Sensing for ambulatory ECG monitoring.
Comput Biol Med. 2016 Apr 1;71:1-13. doi: 10.1016/j.compbiomed.2016.01.013. Epub 2016 Jan 29.
5
Compressed sensing for reduction of noise and artefacts in direct PET image reconstruction.
Z Med Phys. 2014 Mar;24(1):16-26. doi: 10.1016/j.zemedi.2013.05.003. Epub 2013 Jun 10.
6
Non-negative constrained dictionary learning for compressed sensing of ECG signals.
Physiol Meas. 2022 Sep 30;43(9). doi: 10.1088/1361-6579/ac9214.
7
Atrial fibrillation detection on compressed sensed ECG.
Physiol Meas. 2017 Jun 27;38(7):1405-1425. doi: 10.1088/1361-6579/aa7652.
8
Multi-channel ECG data compression using compressed sensing in eigenspace.
Comput Biol Med. 2016 Jun 1;73:24-37. doi: 10.1016/j.compbiomed.2016.03.021. Epub 2016 Mar 30.
9
Exploiting prior knowledge in compressed sensing wireless ECG systems.
IEEE J Biomed Health Inform. 2015 Mar;19(2):508-19. doi: 10.1109/JBHI.2014.2325017. Epub 2014 May 16.
10
Evaluation of Digital Compressed Sensing for Real-Time Wireless ECG System with Bluetooth low Energy.
J Med Syst. 2016 Jul;40(7):170. doi: 10.1007/s10916-016-0526-1. Epub 2016 May 30.

引用本文的文献

1
A Time-Domain Analog Spatial Compressed Sensing Encoder for Multi-Channel Neural Recording.
Sensors (Basel). 2018 Jan 11;18(1):184. doi: 10.3390/s18010184.

本文引用的文献

1
Matrix-Inversion-Free Compressed Sensing With Variable Orthogonal Multi-Matching Pursuit Based on Prior Information for ECG Signals.
IEEE Trans Biomed Circuits Syst. 2016 Aug;10(4):864-873. doi: 10.1109/TBCAS.2016.2539244. Epub 2016 May 19.
2
Adaptive Dictionary Reconstruction for Compressed Sensing of ECG Signals.
IEEE J Biomed Health Inform. 2017 May;21(3):645-654. doi: 10.1109/JBHI.2016.2531182. Epub 2016 Feb 18.
4
Compressed sensing for energy-efficient wireless telemonitoring of noninvasive fetal ECG via block sparse Bayesian learning.
IEEE Trans Biomed Eng. 2013 Feb;60(2):300-9. doi: 10.1109/TBME.2012.2226175. Epub 2012 Oct 23.
5
The impact of the MIT-BIH arrhythmia database.
IEEE Eng Med Biol Mag. 2001 May-Jun;20(3):45-50. doi: 10.1109/51.932724.
6
ECG data compression using cut and align beats approach and 2-D transforms.
IEEE Trans Biomed Eng. 1999 May;46(5):556-64. doi: 10.1109/10.759056.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验