IEEE Trans Cybern. 2016 Jan;46(1):270-83. doi: 10.1109/TCYB.2015.2401038. Epub 2015 Feb 24.
Time series forecasting (TSF) has been widely used in many application areas such as science, engineering, and finance. The phenomena generating time series are usually unknown and information available for forecasting is only limited to the past values of the series. It is, therefore, necessary to use an appropriate number of past values, termed lag, for forecasting. This paper proposes a layered ensemble architecture (LEA) for TSF problems. Our LEA consists of two layers, each of which uses an ensemble of multilayer perceptron (MLP) networks. While the first ensemble layer tries to find an appropriate lag, the second ensemble layer employs the obtained lag for forecasting. Unlike most previous work on TSF, the proposed architecture considers both accuracy and diversity of the individual networks in constructing an ensemble. LEA trains different networks in the ensemble by using different training sets with an aim of maintaining diversity among the networks. However, it uses the appropriate lag and combines the best trained networks to construct the ensemble. This indicates LEAs emphasis on accuracy of the networks. The proposed architecture has been tested extensively on time series data of neural network (NN)3 and NN5 competitions. It has also been tested on several standard benchmark time series data. In terms of forecasting accuracy, our experimental results have revealed clearly that LEA is better than other ensemble and nonensemble methods.
时间序列预测 (TSF) 在许多应用领域(如科学、工程和金融)中得到了广泛应用。生成时间序列的现象通常是未知的,用于预测的信息仅局限于序列的过去值。因此,有必要使用适当数量的过去值(称为滞后值)进行预测。本文提出了一种用于 TSF 问题的分层集成架构 (LEA)。我们的 LEA 由两层组成,每一层都使用多层感知器 (MLP) 网络的集成。第一层集成尝试找到合适的滞后值,而第二层集成则使用获得的滞后值进行预测。与 TSF 上的大多数先前工作不同,所提出的架构在构建集成时同时考虑了单个网络的准确性和多样性。LEA 通过使用不同的训练集来训练集成中的不同网络,目的是保持网络之间的多样性。但是,它使用适当的滞后值并结合最佳训练的网络来构建集成。这表明 LEA 对网络的准确性重视。所提出的架构已在神经网络 (NN)3 和 NN5 竞赛的时间序列数据上进行了广泛测试。它还在几个标准基准时间序列数据上进行了测试。就预测准确性而言,我们的实验结果清楚地表明,LEA 优于其他集成和非集成方法。