Suppr超能文献

一种基于多个神经网络和一种新型启发式优化算法的创新集成模型,用于预测新型冠状病毒肺炎。

An innovative ensemble model based on multiple neural networks and a novel heuristic optimization algorithm for COVID-19 forecasting.

作者信息

Qu Zongxi, Li Yutong, Jiang Xia, Niu Chunhua

机构信息

School of Management, Lanzhou University, Lanzhou 730000, China.

Research Center for Emergency Management, Lanzhou University, Lanzhou 730000, China.

出版信息

Expert Syst Appl. 2023 Feb;212:118746. doi: 10.1016/j.eswa.2022.118746. Epub 2022 Sep 5.

Abstract

During the global fight against the novel coronavirus pneumonia (COVID-19) epidemic, accurate outbreak trend forecasting has become vital for outbreak prevention and control. Effective COVID-19 outbreak trend prediction remains a complex and challenging issue owing to the significant fluctuations in the COVID-19 data series. Most previous studies have limitations only using individual forecasting methods for outbreak modeling, ignoring the combination of the advantages of different prediction methods, which may lead to insufficient results. Therefore, this paper develops a novel ensemble paradigm based on multiple neural networks and a novel heuristic optimization algorithm. First, a new hybrid sine cosine algorithm-whale optimization algorithm (SCWOA) is exercised on 15 benchmark tests. Second, four neural networks are used as predictors for the COVID-19 outbreak forecasting. Each predictor is given a weight, and the proposed SCWOA is used to optimize the best matching weights of the ensemble model. The daily COVID-19 series collected from three of the most-affected countries were taken as the test cases. The experimental results demonstrate that different neural network models have different performances in various complex epidemic prediction scenarios. The SCWOA-based ensemble model can outperform all comparable models with its high accuracy and robustness.

摘要

在全球抗击新型冠状病毒肺炎(COVID-19)疫情的过程中,准确预测疫情爆发趋势对于疫情防控至关重要。由于COVID-19数据序列存在显著波动,有效的COVID-19疫情爆发趋势预测仍然是一个复杂且具有挑战性的问题。以往大多数研究仅使用单一预测方法进行疫情建模,存在局限性,忽略了不同预测方法优势的结合,这可能导致结果不够理想。因此,本文提出了一种基于多个神经网络的新型集成范式和一种新型启发式优化算法。首先,在15个基准测试中运用了一种新的混合正弦余弦算法-鲸鱼优化算法(SCWOA)。其次,使用四个神经网络作为COVID-19疫情爆发预测的预测器。为每个预测器赋予一个权重,并使用所提出的SCWOA来优化集成模型的最佳匹配权重。从三个受影响最严重的国家收集的每日COVID-19数据序列作为测试案例。实验结果表明,不同的神经网络模型在各种复杂的疫情预测场景中具有不同的性能。基于SCWOA的集成模型凭借其高准确性和鲁棒性能够优于所有可比模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65cd/9444161/bc039e5756d2/gr1_lrg.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验