Suppr超能文献

缝隙连接和机械负荷对接种成骨祖细胞的I型胶原支架中矿物质形成的作用。

The role of gap junctions and mechanical loading on mineral formation in a collagen-I scaffold seeded with osteoprogenitor cells.

作者信息

Damaraju Swathi, Matyas John R, Rancourt Derrick E, Duncan Neil A

机构信息

1 McCaig Institute for Bone and Joint Health, University of Calgary , Calgary, Canada .

出版信息

Tissue Eng Part A. 2015 May;21(9-10):1720-32. doi: 10.1089/ten.TEA.2014.0522. Epub 2015 Mar 31.

Abstract

Fracture nonunions represent one of many large bone defects where current treatment strategies fall short in restoring both form and function of the injured tissue. In this case, the use of a tissue-engineered scaffold for promoting bone healing offers an accessible and easy-to-manipulate environment for studying bone formation processes in vitro. We have previously shown that mechanical prestimulation using confined compression of differentiating osteoblasts results in an increase in mineralization formed in a 3D collagen-I scaffold. This study builds on this knowledge by evaluating the short and long-term effects of blocking gap junction-mediated intercellular communication among osteogenic cells on their effectiveness to mineralize collagen-I scaffolds in vitro, and in the presence and absence of mechanical stimulation. In this study, confined compression was applied in conjunction with octanol (a general communication blocker) or 18-α-glycerrhetinic acid (AGA, a specific gap junction blocker) using a modified FlexCell plate to collagen-I scaffolds seeded with murine embryonic stem cells stimulated toward osteoblast differentiation using beta-glycerol phosphate. The activity, presence, and expression of osteoblast cadherin, connexin-43, as well as various pluripotent and osteogenic markers were examined at 5-30 days of differentiation. Fluorescence recovery after photobleaching, immunofluorescence, viability, histology assessments, and reverse-transcriptase polymerase chain reaction assessments revealed that inhibiting communication in this scaffold altered the lineage and function of differentiating osteoblasts. In particular, treatment with communication inhibitors caused reduced mineralization in the matrix, and dissociation between connexin-43 and integrin α5β1. This dissociation was not restored even after long-term recovery. Thus, in order for this scaffold to be considered as an alternative strategy for the repair of large bone defects, cell-cell contacts and cell-matrix interactions must remain intact for osteoblast differentiation and function to be preserved. This study shows that within this 3D scaffold, gap junctions are essential in osteoblast response to mechanical loading, and are essential structures in producing a significant amount and organization of mineralization in the matrix.

摘要

骨折不愈合是众多大型骨缺损之一,目前的治疗策略在恢复受损组织的形态和功能方面存在不足。在这种情况下,使用组织工程支架促进骨愈合为体外研究骨形成过程提供了一个易于获取且易于操作的环境。我们之前已经表明,对分化中的成骨细胞进行受限压缩的机械预刺激会导致在三维I型胶原支架中形成的矿化增加。本研究基于这一知识,通过评估在体外以及在有和没有机械刺激的情况下,阻断成骨细胞间缝隙连接介导的细胞间通讯对其矿化I型胶原支架有效性的短期和长期影响。在本研究中,使用改良的FlexCell板将受限压缩与辛醇(一种通用通讯阻断剂)或18-α-甘草次酸(AGA,一种特异性缝隙连接阻断剂)联合应用于接种了用β-甘油磷酸诱导向成骨细胞分化的小鼠胚胎干细胞的I型胶原支架。在分化的第5至30天检查成骨细胞钙黏蛋白、连接蛋白-43以及各种多能和成骨标志物的活性、存在情况和表达。光漂白后的荧光恢复、免疫荧光、活力、组织学评估以及逆转录酶聚合酶链反应评估表明,抑制该支架中的通讯会改变分化中的成骨细胞的谱系和功能。特别是,用通讯抑制剂处理会导致基质中的矿化减少,以及连接蛋白-43与整合素α5β1之间的解离。即使经过长期恢复,这种解离也没有恢复。因此,为了将该支架视为修复大型骨缺损的替代策略,细胞间接触和细胞-基质相互作用必须保持完整,以维持成骨细胞的分化和功能。本研究表明,在这个三维支架内,缝隙连接对于成骨细胞对机械负荷的反应至关重要,并且是在基质中产生大量矿化及其组织的关键结构。

相似文献

1
The role of gap junctions and mechanical loading on mineral formation in a collagen-I scaffold seeded with osteoprogenitor cells.
Tissue Eng Part A. 2015 May;21(9-10):1720-32. doi: 10.1089/ten.TEA.2014.0522. Epub 2015 Mar 31.
2
The effect of mechanical stimulation on mineralization in differentiating osteoblasts in collagen-I scaffolds.
Tissue Eng Part A. 2014 Dec;20(23-24):3142-53. doi: 10.1089/ten.TEA.2014.0026.
4
Substrate stiffness and contractile behaviour modulate the functional maturation of osteoblasts on a collagen-GAG scaffold.
Acta Biomater. 2010 Nov;6(11):4305-13. doi: 10.1016/j.actbio.2010.06.001. Epub 2010 Jun 8.
5
Effect of collagen-glycosaminoglycan scaffold pore size on matrix mineralization and cellular behavior in different cell types.
J Biomed Mater Res A. 2016 Jan;104(1):291-304. doi: 10.1002/jbm.a.35567. Epub 2015 Oct 1.
6
In situ osteoblast mineralization mediates post-injection mechanical properties of osteoconductive material.
J Mech Behav Biomed Mater. 2014 Oct;38:143-53. doi: 10.1016/j.jmbbm.2014.06.018. Epub 2014 Jul 8.
8
Effects of proliferation and differentiation of mesenchymal stem cells on compressive mechanical behavior of collagen/β-TCP composite scaffold.
J Mech Behav Biomed Mater. 2014 Nov;39:218-30. doi: 10.1016/j.jmbbm.2014.07.013. Epub 2014 Jul 23.

引用本文的文献

1
Cellular stress and epigenetic regulation in adult stem cells.
Life Sci Alliance. 2024 Sep 30;7(12). doi: 10.26508/lsa.202302083. Print 2024 Dec.
2
Establishment of three-dimensional cementocyte differentiation scaffolds to study orthodontic root resorption.
Exp Ther Med. 2020 Oct;20(4):3174-3184. doi: 10.3892/etm.2020.9074. Epub 2020 Jul 29.

本文引用的文献

1
The effect of mechanical stimulation on mineralization in differentiating osteoblasts in collagen-I scaffolds.
Tissue Eng Part A. 2014 Dec;20(23-24):3142-53. doi: 10.1089/ten.TEA.2014.0026.
2
Prevention of the surface resorption of bone grafts by topical application of bisphosphonate on different carrier materials.
Clin Oral Investig. 2014 Dec;18(9):2203-11. doi: 10.1007/s00784-014-1202-9. Epub 2014 Feb 23.
4
Talking among ourselves: paracrine control of bone formation within the osteoblast lineage.
Calcif Tissue Int. 2014 Jan;94(1):35-45. doi: 10.1007/s00223-013-9738-2. Epub 2013 May 22.
6
Intercellular communication via gap junctions affected by mechanical load in the bovine annulus fibrosus.
Comput Methods Biomech Biomed Engin. 2014;17(1):64-71. doi: 10.1080/10255842.2012.717268. Epub 2012 Sep 14.
7
Fabrication of positively charged poly(ethylene glycol)-diacrylate hydrogel as a bone tissue engineering scaffold.
Biomed Mater. 2012 Oct;7(5):055009. doi: 10.1088/1748-6041/7/5/055009. Epub 2012 Sep 4.
9
Collagen for bone tissue regeneration.
Acta Biomater. 2012 Sep;8(9):3191-200. doi: 10.1016/j.actbio.2012.06.014. Epub 2012 Jun 15.
10
Design, fabrication and in vitro evaluation of a novel polymer-hydrogel hybrid scaffold for bone tissue engineering.
J Tissue Eng Regen Med. 2014 Feb;8(2):131-42. doi: 10.1002/term.1506. Epub 2012 Jun 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验