Suppr超能文献

机械刺激对I型胶原蛋白支架中分化成骨细胞矿化的影响。

The effect of mechanical stimulation on mineralization in differentiating osteoblasts in collagen-I scaffolds.

作者信息

Damaraju Swathi, Matyas John R, Rancourt Derrick E, Duncan Neil A

机构信息

1 Biomedical Engineering Program, McCaig Institute for Bone and Joint Health, University of Calgary , Calgary, Alberta, Canada .

出版信息

Tissue Eng Part A. 2014 Dec;20(23-24):3142-53. doi: 10.1089/ten.TEA.2014.0026.

Abstract

Developing a viable and functional bone scaffold in vitro that is capable of surviving and bearing mechanical load in vivo requires an understanding of the cell biology of osteoprogenitor cells, particularly how they are influenced by mechanical stimulation during cell differentiation and maturation. In this study, mechanical load was applied using a modified FlexCell plate to impart confined compression to collagen-I scaffolds seeded with undifferentiated murine embryonic stem cells. The activity, presence, and expression of osteoblast-cadherin (OB-Cad) and connexin-43, as well as various pluripotent and osteogenic markers were examined at 5-30 days of differentiation as cells were stimulated to differentiate to osteoblasts with and without applied mechanical load. Fluorescence recovery after photobleaching, immunofluorescence, viability, von Kossa, and real-time polymerase chain reaction assessments revealed that mechanical prestimulation of this cell-seeded scaffold altered the expression of OB-Cad and connexin-43 and resulted in significant differences in the structure and organization of mineralization present in the collagen matrix. Specifically, cells in gels that were loaded for 40 h after 5 days of differentiation and then left to fully differentiate for 30 days produced a highly structured honeycomb-shaped mineralization in the matrix; an outcome that was previously shown to be indicative of late osteoblast/early osteocyte activity. This study highlights the potential of mechanical load to accelerate differentiation and enhance osteoblast communication and function during the differentiation process, and highlights a time point of cell differentiation within this scaffold to apply load in order to most effectively transduce a mechanical signal.

摘要

在体外开发一种可行且功能完备的骨支架,使其能够在体内存活并承受机械负荷,这需要了解骨祖细胞的细胞生物学,特别是它们在细胞分化和成熟过程中如何受到机械刺激的影响。在本研究中,使用改良的FlexCell板施加机械负荷,对接种未分化小鼠胚胎干细胞的I型胶原蛋白支架施加受限压缩。在分化的5至30天内,当细胞在有或没有施加机械负荷的情况下被刺激分化为成骨细胞时,检测成骨细胞钙黏蛋白(OB-Cad)和连接蛋白43的活性、存在情况和表达,以及各种多能性和成骨标记物。光漂白后的荧光恢复、免疫荧光、活力、冯·科萨染色和实时聚合酶链反应评估表明,这种接种细胞的支架的机械预刺激改变了OB-Cad和连接蛋白43的表达,并导致胶原蛋白基质中矿化的结构和组织存在显著差异。具体而言,在分化5天后加载40小时然后再完全分化30天的凝胶中的细胞,在基质中产生了高度结构化的蜂窝状矿化;先前的研究表明,这一结果表明存在晚期成骨细胞/早期骨细胞活性。本研究强调了机械负荷在分化过程中加速分化、增强成骨细胞通讯和功能的潜力,并突出了在该支架内细胞分化的一个时间点来施加负荷,以便最有效地转导机械信号。

相似文献

1
The effect of mechanical stimulation on mineralization in differentiating osteoblasts in collagen-I scaffolds.
Tissue Eng Part A. 2014 Dec;20(23-24):3142-53. doi: 10.1089/ten.TEA.2014.0026.
2
The role of gap junctions and mechanical loading on mineral formation in a collagen-I scaffold seeded with osteoprogenitor cells.
Tissue Eng Part A. 2015 May;21(9-10):1720-32. doi: 10.1089/ten.TEA.2014.0522. Epub 2015 Mar 31.
7
Effect of collagen-glycosaminoglycan scaffold pore size on matrix mineralization and cellular behavior in different cell types.
J Biomed Mater Res A. 2016 Jan;104(1):291-304. doi: 10.1002/jbm.a.35567. Epub 2015 Oct 1.
9
Enhanced differentiation of human embryonic stem cells on extracellular matrix-containing osteomimetic scaffolds for bone tissue engineering.
Tissue Eng Part C Methods. 2014 Nov;20(11):865-74. doi: 10.1089/ten.TEC.2013.0411. Epub 2014 Jun 18.
10
Substrate stiffness and contractile behaviour modulate the functional maturation of osteoblasts on a collagen-GAG scaffold.
Acta Biomater. 2010 Nov;6(11):4305-13. doi: 10.1016/j.actbio.2010.06.001. Epub 2010 Jun 8.

引用本文的文献

1
Applications of Osteoimmunomodulation Models in Evaluating Osteogenic Biomaterials.
J Funct Biomater. 2025 Jun 11;16(6):217. doi: 10.3390/jfb16060217.
3
Cellular stress and epigenetic regulation in adult stem cells.
Life Sci Alliance. 2024 Sep 30;7(12). doi: 10.26508/lsa.202302083. Print 2024 Dec.
4
Establishment of three-dimensional cementocyte differentiation scaffolds to study orthodontic root resorption.
Exp Ther Med. 2020 Oct;20(4):3174-3184. doi: 10.3892/etm.2020.9074. Epub 2020 Jul 29.
9
Ectopic osteogenesis and scaffold biodegradation of nano-hydroxyapatite-chitosan in a rat model.
PLoS One. 2015 Aug 10;10(8):e0135366. doi: 10.1371/journal.pone.0135366. eCollection 2015.
10
The role of gap junctions and mechanical loading on mineral formation in a collagen-I scaffold seeded with osteoprogenitor cells.
Tissue Eng Part A. 2015 May;21(9-10):1720-32. doi: 10.1089/ten.TEA.2014.0522. Epub 2015 Mar 31.

本文引用的文献

5
Intercellular communication via gap junctions affected by mechanical load in the bovine annulus fibrosus.
Comput Methods Biomech Biomed Engin. 2014;17(1):64-71. doi: 10.1080/10255842.2012.717268. Epub 2012 Sep 14.
6
Application of ImageJ program to the enumeration of Orientia tsutsugamushi organisms cultured in vitro.
Trans R Soc Trop Med Hyg. 2012 Oct;106(10):632-5. doi: 10.1016/j.trstmh.2012.05.004. Epub 2012 Jul 11.
7
Collagen for bone tissue regeneration.
Acta Biomater. 2012 Sep;8(9):3191-200. doi: 10.1016/j.actbio.2012.06.014. Epub 2012 Jun 15.
9
Effect of mechanical stimulation on the differentiation of cord stem cells.
Connect Tissue Res. 2012;53(2):149-59. doi: 10.3109/03008207.2011.619284. Epub 2011 Dec 7.
10
Regulation of subchondral bone osteoblast metabolism by cyclic compression.
Arthritis Rheum. 2012 Apr;64(4):1193-203. doi: 10.1002/art.33445. Epub 2011 Oct 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验