Hawkins Aaron B, Lian Hong, Zeldes Benjamin M, Loder Andrew J, Lipscomb Gina L, Schut Gerrit J, Keller Matthew W, Adams Michael W W, Kelly Robert M
Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, 27695-7905.
Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, 30602.
Biotechnol Bioeng. 2015 Aug;112(8):1533-43. doi: 10.1002/bit.25584. Epub 2015 Jun 11.
Metabolically engineered strains of the hyperthermophile Pyrococcus furiosus (T(opt) 95-100°C), designed to produce 3-hydroxypropionate (3HP) from maltose and CO2 using enzymes from the Metallosphaera sedula (T(opt) 73°C) carbon fixation cycle, were examined with respect to the impact of heterologous gene expression on metabolic activity, fitness at optimal and sub-optimal temperatures, gas-liquid mass transfer in gas-intensive bioreactors, and potential bottlenecks arising from product formation. Transcriptomic comparisons of wild-type P. furiosus, a genetically-tractable, naturally-competent mutant (COM1), and COM1-based strains engineered for 3HP production revealed numerous differences after being shifted from 95°C to 72°C, where product formation catalyzed by the heterologously-produced M. sedula enzymes occurred. At 72°C, significantly higher levels of metabolic activity and a stress response were evident in 3HP-forming strains compared to the non-producing parent strain (COM1). Gas-liquid mass transfer limitations were apparent, given that 3HP titers and volumetric productivity in stirred bioreactors could be increased over 10-fold by increased agitation and higher CO2 sparging rates, from 18 mg/L to 276 mg/L and from 0.7 mg/L/h to 11 mg/L/h, respectively. 3HP formation triggered transcription of genes for protein stabilization and turnover, RNA degradation, and reactive oxygen species detoxification. The results here support the prospects of using thermally diverse sources of pathways and enzymes in metabolically engineered strains designed for product formation at sub-optimal growth temperatures.
嗜热栖热菌(最适生长温度95-100°C)的代谢工程菌株,旨在利用嗜热栖硫叶菌(最适生长温度73°C)碳固定循环中的酶从麦芽糖和二氧化碳生产3-羟基丙酸(3HP),研究了异源基因表达对代谢活性、最佳和次最佳温度下的适应性、气体密集型生物反应器中的气液传质以及产物形成引起的潜在瓶颈的影响。对野生型嗜热栖热菌、一种具有遗传可操作性、天然感受态的突变体(COM1)以及基于COM1设计用于生产3HP的菌株进行转录组比较,结果显示,在从95°C转移到72°C后,即由异源产生的嗜热栖硫叶菌酶催化产物形成时,出现了许多差异。在72°C时,与不产生3HP的亲本菌株(COM1)相比,形成3HP的菌株中代谢活性和应激反应水平明显更高。气液传质限制很明显,因为在搅拌生物反应器中,通过增加搅拌和提高二氧化碳鼓泡速率,3HP滴度和体积生产率可分别从18 mg/L提高到276 mg/L,从0.7 mg/L/h提高到11 mg/L/h,提高超过10倍。3HP的形成触发了蛋白质稳定和周转、RNA降解以及活性氧解毒相关基因的转录。这里的结果支持了在为次最佳生长温度下的产物形成而设计的代谢工程菌株中使用热多样性途径和酶源的前景。