Klint Julie K, Smith Jennifer J, Vetter Irina, Rupasinghe Darshani B, Er Sing Yan, Senff Sebastian, Herzig Volker, Mobli Mehdi, Lewis Richard J, Bosmans Frank, King Glenn F
Centre for Pain Research, Institute for Molecular Bioscience, St. Lucia, Qld, Australia.
Br J Pharmacol. 2015 May;172(10):2445-58. doi: 10.1111/bph.13081. Epub 2015 Mar 4.
Chronic pain is a serious worldwide health issue, with current analgesics having limited efficacy and dose-limiting side effects. Humans with loss-of-function mutations in the voltage-gated sodium channel NaV 1.7 (hNaV 1.7) are indifferent to pain, making hNaV 1.7 a promising target for analgesic development. Since spider venoms are replete with NaV channel modulators, we examined their potential as a source of hNaV 1.7 inhibitors.
We developed a high-throughput fluorescent-based assay to screen spider venoms against hNaV 1.7 and isolate 'hit' peptides. To examine the binding site of these peptides, we constructed a panel of chimeric channels in which the S3b-S4 paddle motif from each voltage sensor domain of hNaV 1.7 was transplanted into the homotetrameric KV 2.1 channel.
We screened 205 spider venoms and found that 40% contain at least one inhibitor of hNaV 1.7. By deconvoluting 'hit' venoms, we discovered seven novel members of the NaSpTx family 1. One of these peptides, Hd1a (peptide μ-TRTX-Hd1a from venom of the spider Haplopelma doriae), inhibited hNaV 1.7 with a high level of selectivity over all other subtypes, except hNaV 1.1. We showed that Hd1a is a gating modifier that inhibits hNaV 1.7 by interacting with the S3b-S4 paddle motif in channel domain II. The structure of Hd1a, determined using heteronuclear NMR, contains an inhibitor cystine knot motif that is likely to confer high levels of chemical, thermal and biological stability.
Our data indicate that spider venoms are a rich natural source of hNaV 1.7 inhibitors that might be useful leads for the development of novel analgesics.
慢性疼痛是一个严重的全球性健康问题,目前的镇痛药疗效有限且存在剂量限制性副作用。携带电压门控钠通道NaV 1.7(hNaV 1.7)功能丧失突变的人类对疼痛不敏感,这使得hNaV 1.7成为镇痛药开发的一个有前景的靶点。由于蜘蛛毒液富含钠通道调节剂,我们研究了其作为hNaV 1.7抑制剂来源的潜力。
我们开发了一种基于荧光的高通量检测方法,用于筛选蜘蛛毒液对hNaV 1.7的作用并分离出“阳性”肽段。为了研究这些肽段的结合位点,我们构建了一组嵌合通道,其中将hNaV 1.7每个电压感受器结构域的S3b - S4桨状基序移植到同四聚体KV 2.1通道中。
我们筛选了205种蜘蛛毒液,发现40%的毒液至少含有一种hNaV 1.7抑制剂。通过对“阳性”毒液进行解卷积分析,我们发现了NaSpTx家族1的七个新成员。其中一种肽段Hd1a(来自蜘蛛多氏原蛛毒液的肽段μ - TRTX - Hd1a)对hNaV 1.7具有高度选择性抑制作用,对所有其他亚型(除hNaV 1.1外)均有抑制作用。我们表明Hd1a是一种门控修饰剂,通过与通道结构域II中的S3b - S4桨状基序相互作用来抑制hNaV 1.7。使用异核核磁共振确定的Hd1a结构包含一个抑制剂胱氨酸结基序,这可能赋予其高水平的化学、热和生物学稳定性。
我们的数据表明,蜘蛛毒液是hNaV 1.7抑制剂的丰富天然来源,可能是新型镇痛药开发的有用先导物。