Charafeddine Rabab A, Makdisi Joy, Schairer David, O'Rourke Brian P, Diaz-Valencia Juan D, Chouake Jason, Kutner Allison, Krausz Aimee, Adler Brandon, Nacharaju Parimala, Liang Hongying, Mukherjee Suranjana, Friedman Joel M, Friedman Adam, Nosanchuk Joshua D, Sharp David J
Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York, USA.
Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA.
J Invest Dermatol. 2015 Sep;135(9):2309-2318. doi: 10.1038/jid.2015.94. Epub 2015 Mar 10.
Wound healing is a complex process driven largely by the migration of a variety of distinct cell types from the wound margin into the wound zone. In this study, we identify the previously uncharacterized microtubule-severing enzyme, Fidgetin-like 2 (FL2), as a fundamental regulator of cell migration that can be targeted in vivo using nanoparticle-encapsulated small interfering RNA (siRNA) to promote wound closure and regeneration. In vitro, depletion of FL2 from mammalian tissue culture cells results in a more than twofold increase in the rate of cell movement, in part due to a significant increase in directional motility. Immunofluorescence analyses indicate that FL2 normally localizes to the cell edge, importantly to the leading edge of polarized cells, where it regulates the organization and dynamics of the microtubule cytoskeleton. To clinically translate these findings, we utilized a nanoparticle-based siRNA delivery platform to locally deplete FL2 in both murine full-thickness excisional and burn wounds. Topical application of FL2 siRNA nanoparticles to either wound type results in a significant enhancement in the rate and quality of wound closure both clinically and histologically relative to controls. Taken together, these results identify FL2 as a promising therapeutic target to promote the regeneration and repair of cutaneous wounds.
伤口愈合是一个复杂的过程,主要由多种不同类型的细胞从伤口边缘迁移到伤口区域所驱动。在本研究中,我们鉴定出了此前未被表征的微管切断酶——类Fidgetin 2(FL2),它是细胞迁移的一个基本调节因子,可在体内使用纳米颗粒包裹的小干扰RNA(siRNA)进行靶向作用,以促进伤口闭合和再生。在体外,从哺乳动物组织培养细胞中去除FL2会导致细胞移动速率增加两倍多,部分原因是定向运动性显著增加。免疫荧光分析表明,FL2通常定位于细胞边缘,重要的是定位于极化细胞的前沿,在那里它调节微管细胞骨架的组织和动态。为了将这些发现转化为临床应用,我们利用基于纳米颗粒的siRNA递送平台在小鼠全层切除伤口和烧伤伤口中局部去除FL2。相对于对照,将FL2 siRNA纳米颗粒局部应用于任何一种伤口类型,在临床和组织学上均能显著提高伤口闭合的速率和质量。综上所述,这些结果表明FL2是促进皮肤伤口再生和修复的一个有前景的治疗靶点。