Huang Yimei, Zhao Bo, Chetty Indrin J, Brown Stephen, Gordon James, Wen Ning
Department of Radiation Oncology, Henry Ford Health System, Detroit, MI, USA
Department of Radiation Oncology, Henry Ford Health System, Detroit, MI, USA.
Technol Cancer Res Treat. 2016 Apr;15(2):243-8. doi: 10.1177/1533034615574385. Epub 2015 Mar 10.
To evaluate the overall positioning accuracy of image-guided intracranial radiosurgery across multiple linear accelerator platforms.
A computed tomography scan with a slice thickness of 1.0 mm was acquired of an anthropomorphic head phantom in a BrainLAB U-frame mask. The phantom was embedded with three 5-mm diameter tungsten ball bearings, simulating a central, a left, and an anterior cranial lesion. The ball bearings were positioned to radiation isocenter under ExacTrac X-ray or cone-beam computed tomography image guidance on 3 Linacs: (1) ExacTrac X-ray localization on a Novalis Tx; (2) cone-beam computed tomography localization on the Novalis Tx; (3) cone-beam computed tomography localization on a TrueBeam; and (4) cone-beam computed tomography localization on an Edge. Each ball bearing was positioned 5 times to the radiation isocenter with different initial setup error following the 4 image guidance procedures on the 3 Linacs, and the mean (µ) and one standard deviation (σ) of the residual error were compared.
Averaged overall 3 ball bearing locations, the vector length of the residual setup error in mm (µ ± σ) was 0.6 ± 0.2, 1.0 ± 0.5, 0.2 ± 0.1, and 0.3 ± 0.1 on ExacTrac X-ray localization on a Novalis Tx, cone-beam computed tomography localization on the Novalis Tx, cone-beam computed tomography localization on a TrueBeam, and cone-beam computed tomography localization on an Edge, with their range in mm being 0.4 to 1.1, 0.4 to 1.9, 0.1 to 0.5, and 0.2 to 0.6, respectively. The congruence between imaging and radiation isocenters in mm was 0.6 ± 0.1, 0.7 ± 0.1, 0.3 ± 0.1, and 0.2 ± 0.1, for the 4 systems, respectively.
Targeting accuracy comparable to frame-based stereotactic radiosurgery can be achieved with image-guided intracranial stereotactic radiosurgery treatment.
评估跨多个直线加速器平台的图像引导颅内放射外科手术的总体定位精度。
在BrainLAB U型面罩中对一个仿真人头模进行层厚为1.0 mm的计算机断层扫描。该头模中嵌入了三个直径5 mm的钨制滚珠轴承,模拟中央、左侧和前部颅骨病变。在3台直线加速器上,通过ExacTrac X射线或锥形束计算机断层扫描图像引导,将滚珠轴承定位到放射等中心:(1)在Novalis Tx上进行ExacTrac X射线定位;(2)在Novalis Tx上进行锥形束计算机断层扫描定位;(3)在TrueBeam上进行锥形束计算机断层扫描定位;(4)在Edge上进行锥形束计算机断层扫描定位。按照3台直线加速器上的4种图像引导程序,每个滚珠轴承以不同的初始设置误差向放射等中心定位5次,并比较残余误差的平均值(µ)和一个标准差(σ)。
平均3个滚珠轴承的位置,在Novalis Tx上进行ExacTrac X射线定位、在Novalis Tx上进行锥形束计算机断层扫描定位、在TrueBeam上进行锥形束计算机断层扫描定位以及在Edge上进行锥形束计算机断层扫描定位时,残余设置误差的矢量长度(mm,µ±σ)分别为0.6±0.2、1.0±0.5、0.2±0.1和0.3±0.1,其范围(mm)分别为0.4至1.1、0.4至1.9、0.1至0.5和0.2至0.6。对于这4个系统,成像等中心与放射等中心之间的重合度(mm)分别为0.6±0.1、0.7±0.1、0.3±0.1和0.2±0.1。
图像引导颅内立体定向放射外科治疗可实现与基于框架的立体定向放射外科相当的靶向精度。