Suppr超能文献

青霉素结合蛋白2a中新生细胞壁的变构位点:耐甲氧西林金黄色葡萄球菌的致命弱点。

The Allosteric Site for the Nascent Cell Wall in Penicillin-Binding Protein 2a: An Achilles' Heel of Methicillin-Resistant Staphylococcus aureus.

作者信息

Acebrón Iván, Chang Mayland, Mobashery Shahriar, Hermoso Juan A

机构信息

Department of Crystallography and Structural Biology, Instituto de Quimica Fisica "Rocasolano", CSIC, c/ Serrano 119, E-28006 Madrid, Spain.

出版信息

Curr Med Chem. 2015;22(14):1678-86. doi: 10.2174/0929867322666150311150215.

Abstract

The ability to resist the effect of a wide range of antibiotics makes methicillin-resistant Staphylococcus aureus (MRSA) a leading global human pathogen. A key determinant of resistance to β-lactam antibiotics in this organism is penicillin-binding protein 2a (PBP2a), an enzyme that catalyzes the crosslinking reaction between two adjacent peptide stems during the peptidoglycan biosynthesis. The recently published crystal structure of the complex of PBP2a with ceftaroline, a cephalosporin antibiotic that shows efficacy against MRSA, has revealed the allosteric site at 60-Å distance from the transpeptidase domain. Binding of ceftaroline to the allosteric site of PBP2a triggers conformational changes that lead to the opening of the active site from a closed conformation, where a second molecule of ceftaroline binds to give inhibition of the enzyme. The discovery of allostery in MRSA remains the only known example of such regulation of cellwall biosynthesis and represents a new paradigm in fighting MRSA. This review summarizes the present knowledge of the allosteric mechanism, the conformational changes allowing PBP2a catalysis and the means by which some clinical strains have acquired resistance to ceftaroline by disrupting the allosteric mechanism.

摘要

耐多种抗生素的能力使耐甲氧西林金黄色葡萄球菌(MRSA)成为全球主要的人类病原体。该生物体对β-内酰胺类抗生素耐药的一个关键决定因素是青霉素结合蛋白2a(PBP2a),它是一种在肽聚糖生物合成过程中催化两个相邻肽茎之间交联反应的酶。最近发表的PBP2a与头孢洛林(一种对MRSA有效的头孢菌素抗生素)复合物的晶体结构揭示了距转肽酶结构域60埃处的变构位点。头孢洛林与PBP2a变构位点的结合引发构象变化,导致活性位点从封闭构象打开,在此构象下,另一个头孢洛林分子结合以抑制该酶。MRSA变构现象的发现仍然是细胞壁生物合成这种调控的唯一已知例子,代表了对抗MRSA的一种新范式。本综述总结了目前关于变构机制、允许PBP2a催化的构象变化以及一些临床菌株通过破坏变构机制而对头孢洛林产生耐药性的方式的知识。

相似文献

6

引用本文的文献

7
Exploration of the Structural Space in 4(3)-Quinazolinone Antibacterials.探索 4(3)-喹唑啉酮类抗菌药物的结构空间。
J Med Chem. 2020 May 28;63(10):5287-5296. doi: 10.1021/acs.jmedchem.0c00153. Epub 2020 May 8.
8
Structural approaches to pathway-specific antimicrobial agents.结构导向的抗菌药物作用途径研究。
Transl Res. 2020 Jun;220:114-121. doi: 10.1016/j.trsl.2020.02.001. Epub 2020 Feb 6.
10
Constructing and deconstructing the bacterial cell wall.构建与解构细菌细胞壁。
Protein Sci. 2020 Mar;29(3):629-646. doi: 10.1002/pro.3737. Epub 2019 Nov 20.

本文引用的文献

3
What do we need to do to tackle antimicrobial resistance?我们需要做些什么来应对抗菌药物耐药性?
Lancet Glob Health. 2014 Jan;2(1):e11-2. doi: 10.1016/S2214-109X(13)70086-X. Epub 2013 Nov 18.
7
Bacterial cell-wall recycling.细菌细胞壁的循环利用。
Ann N Y Acad Sci. 2013 Jan;1277(1):54-75. doi: 10.1111/j.1749-6632.2012.06813.x. Epub 2012 Nov 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验