Narusaka Mari, Hatakeyama Katsunori, Shirasu Ken, Narusaka Yoshihiro
a Research Institute for Biological Sciences Okayama; Okayama, Japan.
Plant Signal Behav. 2014;9(7):e29130. doi: 10.4161/psb.29130.
Bacterial wilt phytopathogen Ralstonia solanacearum is a serious soil-borne disease that attacks several economically important plants worldwide, including Brassicaceae. Previous studies indicate that recognition of avirulence (Avr)-effector PopP2 by resistance (R) protein, RRS1-R, and physical interaction between RRS1-R and PopP2 in the nucleus are required for resistance. Of late, we showed that a pair of Arabidopsis thaliana TIR-NLR proteins, RRS1 and RPS4, function together in disease resistance against multiple pathogen isolates. Here, we report that dual R proteins, RRS1 and RPS4, from A. thaliana ecotype Wassilewskija confer resistance to bacterial wilt in transgenic Brassica crops. For practical applications, this finding may provide a new strategy for developing disease resistant plants that express R genes from other plants.
青枯病植物病原体青枯雷尔氏菌是一种严重的土传病害,它侵袭全球多种具有重要经济价值的植物,包括十字花科植物。先前的研究表明,抗性(R)蛋白RRS1-R识别无毒(Avr)效应子PopP2以及RRS1-R与PopP2在细胞核中的物理相互作用是产生抗性所必需的。最近,我们发现拟南芥的一对TIR-NLR蛋白RRS1和RPS4共同发挥作用,抵抗多种病原体分离株。在此,我们报道来自拟南芥生态型瓦西列夫斯基的双R蛋白RRS1和RPS4赋予转基因十字花科作物对青枯病的抗性。在实际应用中,这一发现可能为培育表达其他植物R基因的抗病植物提供新策略。