Suppr超能文献

基于分子特征的蛋白质适应性景观的定量描述

Quantitative Description of a Protein Fitness Landscape Based on Molecular Features.

作者信息

Meini María-Rocío, Tomatis Pablo E, Weinreich Daniel M, Vila Alejandro J

机构信息

Laboratory of Metalloproteins, Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR) and Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina.

Department of Ecology and Evolutionary Biology, and Center for Computational Molecular Biology, Brown University.

出版信息

Mol Biol Evol. 2015 Jul;32(7):1774-87. doi: 10.1093/molbev/msv059. Epub 2015 Mar 12.

Abstract

Understanding the driving forces behind protein evolution requires the ability to correlate the molecular impact of mutations with organismal fitness. To address this issue, we employ here metallo-β-lactamases as a model system, which are Zn(II) dependent enzymes that mediate antibiotic resistance. We present a study of all the possible evolutionary pathways leading to a metallo-β-lactamase variant optimized by directed evolution. By studying the activity, stability and Zn(II) binding capabilities of all mutants in the preferred evolutionary pathways, we show that this local fitness landscape is strongly conditioned by epistatic interactions arising from the pleiotropic effect of mutations in the different molecular features of the enzyme. Activity and stability assays in purified enzymes do not provide explanatory power. Instead, measurement of these molecular features in an environment resembling the native one provides an accurate description of the observed antibiotic resistance profile. We report that optimization of Zn(II) binding abilities of metallo-β-lactamases during evolution is more critical than stabilization of the protein to enhance fitness. A global analysis of these parameters allows us to connect genotype with fitness based on quantitative biochemical and biophysical parameters.

摘要

要理解蛋白质进化背后的驱动力,需要具备将突变的分子影响与生物体适应性相关联的能力。为了解决这个问题,我们在此采用金属β-内酰胺酶作为模型系统,它们是依赖锌(II)的酶,介导抗生素抗性。我们展示了一项关于导致通过定向进化优化的金属β-内酰胺酶变体的所有可能进化途径的研究。通过研究优选进化途径中所有突变体的活性、稳定性和锌(II)结合能力,我们表明这种局部适应性景观受到酶不同分子特征中突变的多效性效应所产生的上位性相互作用的强烈制约。纯化酶中的活性和稳定性测定并不能提供解释力。相反,在类似于天然环境的条件下测量这些分子特征,可以准确描述观察到的抗生素抗性概况。我们报告,在进化过程中优化金属β-内酰胺酶的锌(II)结合能力比稳定蛋白质以提高适应性更为关键。对这些参数的全局分析使我们能够基于定量生化和生物物理参数将基因型与适应性联系起来。

相似文献

1
Quantitative Description of a Protein Fitness Landscape Based on Molecular Features.
Mol Biol Evol. 2015 Jul;32(7):1774-87. doi: 10.1093/molbev/msv059. Epub 2015 Mar 12.
2
SHV-129: A Gateway to Global Suppressors in the SHV β-Lactamase Family?
Mol Biol Evol. 2016 Feb;33(2):429-41. doi: 10.1093/molbev/msv235. Epub 2015 Nov 3.
3
Capturing the mutational landscape of the beta-lactamase TEM-1.
Proc Natl Acad Sci U S A. 2013 Aug 6;110(32):13067-72. doi: 10.1073/pnas.1215206110. Epub 2013 Jul 22.
4
Environmental changes bridge evolutionary valleys.
Sci Adv. 2016 Jan 22;2(1):e1500921. doi: 10.1126/sciadv.1500921. eCollection 2016 Jan.
5
Shifting Fitness and Epistatic Landscapes Reflect Trade-offs along an Evolutionary Pathway.
J Mol Biol. 2016 Jul 3;428(13):2730-43. doi: 10.1016/j.jmb.2016.04.033. Epub 2016 May 10.
6
Enzyme Efficiency but Not Thermostability Drives Cefotaxime Resistance Evolution in TEM-1 β-Lactamase.
Mol Biol Evol. 2017 May 1;34(5):1040-1054. doi: 10.1093/molbev/msx053.
7
Optimization of Conformational Dynamics in an Epistatic Evolutionary Trajectory.
Mol Biol Evol. 2016 Jul;33(7):1768-76. doi: 10.1093/molbev/msw052. Epub 2016 Mar 15.
8
Adaptive protein evolution grants organismal fitness by improving catalysis and flexibility.
Proc Natl Acad Sci U S A. 2008 Dec 30;105(52):20605-10. doi: 10.1073/pnas.0807989106. Epub 2008 Dec 19.
9
Initial mutations direct alternative pathways of protein evolution.
PLoS Genet. 2011 Mar;7(3):e1001321. doi: 10.1371/journal.pgen.1001321. Epub 2011 Mar 3.
10
Patterns of Epistasis between beneficial mutations in an antibiotic resistance gene.
Mol Biol Evol. 2013 Aug;30(8):1779-87. doi: 10.1093/molbev/mst096. Epub 2013 May 15.

引用本文的文献

2
Exploiting the fitness cost of metallo-β-lactamase expression can overcome antibiotic resistance in bacterial pathogens.
Nat Microbiol. 2025 Jan;10(1):53-65. doi: 10.1038/s41564-024-01883-8. Epub 2025 Jan 2.
5
Robust genome and cell engineering via in vitro and in situ circularized RNAs.
Nat Biomed Eng. 2025 Jan;9(1):109-126. doi: 10.1038/s41551-024-01245-z. Epub 2024 Aug 26.
6
Sampling Strategies for Experimentally Mapping Molecular Fitness Landscapes Using High-Throughput Methods.
J Mol Evol. 2024 Aug;92(4):402-414. doi: 10.1007/s00239-024-10179-8. Epub 2024 Jun 17.
7
Epistasis arises from shifting the rate-limiting step during enzyme evolution of a β-lactamase.
Nat Catal. 2024;7(5):499-509. doi: 10.1038/s41929-024-01117-4. Epub 2024 Feb 23.
8
Epistasis facilitates functional evolution in an ancient transcription factor.
Elife. 2024 May 20;12:RP88737. doi: 10.7554/eLife.88737.
9
A multi-layered computational structural genomics approach enhances domain-specific interpretation of Kleefstra syndrome variants in EHMT1.
Comput Struct Biotechnol J. 2023 Oct 13;21:5249-5258. doi: 10.1016/j.csbj.2023.10.022. eCollection 2023.

本文引用的文献

1
Evolution of Metallo-β-lactamases: Trends Revealed by Natural Diversity and in vitro Evolution.
Antibiotics (Basel). 2014 Jul 1;3(3):285-316. doi: 10.3390/antibiotics3030285.
2
A comprehensive, high-resolution map of a gene's fitness landscape.
Mol Biol Evol. 2014 Jun;31(6):1581-92. doi: 10.1093/molbev/msu081. Epub 2014 Feb 23.
3
Host-specific enzyme-substrate interactions in SPM-1 metallo-β-lactamase are modulated by second sphere residues.
PLoS Pathog. 2014 Jan;10(1):e1003817. doi: 10.1371/journal.ppat.1003817. Epub 2014 Jan 2.
4
Should evolutionary geneticists worry about higher-order epistasis?
Curr Opin Genet Dev. 2013 Dec;23(6):700-7. doi: 10.1016/j.gde.2013.10.007. Epub 2013 Nov 27.
5
Impact of reconstituted cytosol on protein stability.
Proc Natl Acad Sci U S A. 2013 Nov 26;110(48):19342-7. doi: 10.1073/pnas.1312678110. Epub 2013 Nov 11.
7
Capturing the mutational landscape of the beta-lactamase TEM-1.
Proc Natl Acad Sci U S A. 2013 Aug 6;110(32):13067-72. doi: 10.1073/pnas.1215206110. Epub 2013 Jul 22.
8
Epistasis among adaptive mutations in deer mouse hemoglobin.
Science. 2013 Jun 14;340(6138):1324-7. doi: 10.1126/science.1236862.
9
The role of epistasis in protein evolution.
Nature. 2013 May 30;497(7451):E1-2; discussion E2-3. doi: 10.1038/nature12219.
10
Stability-mediated epistasis constrains the evolution of an influenza protein.
Elife. 2013 May 14;2:e00631. doi: 10.7554/eLife.00631.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验