Suppr超能文献

揭示食物的营养状况。

Uncovering the nutritional landscape of food.

作者信息

Kim Seunghyeon, Sung Jaeyun, Foo Mathias, Jin Yong-Su, Kim Pan-Jun

机构信息

Asia Pacific Center for Theoretical Physics, Pohang, Republic of Korea; Department of Physics, Pohang University of Science and Technology, Pohang, Republic of Korea.

Asia Pacific Center for Theoretical Physics, Pohang, Republic of Korea.

出版信息

PLoS One. 2015 Mar 13;10(3):e0118697. doi: 10.1371/journal.pone.0118697. eCollection 2015.

Abstract

Recent progresses in data-driven analysis methods, including network-based approaches, are revolutionizing many classical disciplines. These techniques can also be applied to food and nutrition, which must be studied to design healthy diets. Using nutritional information from over 1,000 raw foods, we systematically evaluated the nutrient composition of each food in regards to satisfying daily nutritional requirements. The nutrient balance of a food was quantified and termed nutritional fitness; this measure was based on the food's frequency of occurrence in nutritionally adequate food combinations. Nutritional fitness offers a way to prioritize recommendable foods within a global network of foods, in which foods are connected based on the similarities of their nutrient compositions. We identified a number of key nutrients, such as choline and α-linolenic acid, whose levels in foods can critically affect the nutritional fitness of the foods. Analogously, pairs of nutrients can have the same effect. In fact, two nutrients can synergistically affect the nutritional fitness, although the individual nutrients alone may not have an impact. This result, involving the tendency among nutrients to exhibit correlations in their abundances across foods, implies a hidden layer of complexity when exploring for foods whose balance of nutrients within pairs holistically helps meet nutritional requirements. Interestingly, foods with high nutritional fitness successfully maintain this nutrient balance. This effect expands our scope to a diverse repertoire of nutrient-nutrient correlations, which are integrated under a common network framework that yields unexpected yet coherent associations between nutrients. Our nutrient-profiling approach combined with a network-based analysis provides a more unbiased, global view of the relationships between foods and nutrients, and can be extended towards nutritional policies, food marketing, and personalized nutrition.

摘要

包括基于网络的方法在内的数据驱动分析方法的最新进展正在彻底改变许多经典学科。这些技术也可应用于食品与营养领域,而要设计健康饮食就必须对该领域进行研究。利用来自1000多种天然食物的营养信息,我们系统地评估了每种食物在满足每日营养需求方面的营养成分。我们对一种食物的营养平衡进行了量化,并将其称为营养适宜度;这一衡量标准是基于该食物在营养充足的食物组合中的出现频率。营养适宜度提供了一种在全球食物网络中对推荐食物进行优先级排序的方法,在这个网络中,食物是根据其营养成分的相似性相互关联的。我们确定了一些关键营养素,如胆碱和α-亚麻酸,它们在食物中的含量会严重影响食物的营养适宜度。类似地,成对的营养素也会有同样的效果。事实上,两种营养素可能会协同影响营养适宜度,尽管单独的每种营养素可能没有影响。这一结果涉及不同食物中营养素含量呈现相关性的趋势,这意味着在探索那些成对营养素平衡能整体上有助于满足营养需求的食物时存在一层隐藏的复杂性。有趣的是,营养适宜度高的食物能成功维持这种营养平衡。这种效应将我们的视野扩展到了各种各样的营养素-营养素相关性,这些相关性整合在一个共同的网络框架下,该框架产生了营养素之间意想不到但却连贯的关联。我们的营养剖析方法与基于网络的分析相结合,提供了一个更公正且全面的食物与营养素之间关系的视角,并且可以扩展到营养政策、食品营销和个性化营养领域。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9265/4359127/822379eee2ff/pone.0118697.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验