Ning Bo, Kennedy Matthew J, Dixon Adam J, Sun Naidi, Cao Rui, Soetikno Brian T, Chen Ruimin, Zhou Qifa, Kirk Shung K, Hossack John A, Hu Song
Opt Lett. 2015 Mar 15;40(6):910-3. doi: 10.1364/OL.40.000910.
Capitalizing on the optical absorption of hemoglobin, photoacoustic microscopy (PAM) is uniquely capable of anatomical and functional characterization of the intact microcirculation in vivo. However, PAM of the metabolic rate of oxygen (MRO) at the microscopic level remains an unmet challenge, mainly due to the inability to simultaneously quantify microvascular diameter, oxygen saturation of hemoglobin (sO), and blood flow at the same spatial scale. To fill this technical gap, we have developed a multi-parametric PAM platform. By analyzing both the sO-encoded spectral dependence and the flow-induced temporal decorrelation of photoacoustic signals generated by the raster-scanned mouse ear vasculature, we demonstrated-for the first time-simultaneous wide-field PAM of all three parameters down to the capillary level in vivo.
光声显微镜(PAM)利用血红蛋白的光吸收特性,能够在体内对完整的微循环进行独特的解剖学和功能表征。然而,在微观水平上对氧代谢率(MRO)进行光声显微镜成像仍然是一个尚未解决的挑战,主要原因是无法在相同的空间尺度上同时量化微血管直径、血红蛋白氧饱和度(sO)和血流。为了填补这一技术空白,我们开发了一个多参数光声显微镜平台。通过分析光栅扫描的小鼠耳部血管产生的光声信号的sO编码光谱依赖性和血流引起的时间去相关,我们首次在体内证明了在毛细血管水平上对所有三个参数进行同时宽场光声显微镜成像。