Zhang Shuyan, Li Jingtan, Shen Lin, Zhao Zhonghao, Lee Minjun, Qian Kun, Sun Naidi, Hu Bin
Key Laboratory of Brain Health Intelligent Evaluation and Intervention (Beijing Institute of Technology), Ministry of Education, China.
School of Medical Technology, Beijing Institute of Technology, China.
Photoacoustics. 2025 Jan 9;42:100687. doi: 10.1016/j.pacs.2025.100687. eCollection 2025 Apr.
Photoacoustic microscopy (PAM) leverages the photoacoustic effect to provide high-resolution structural and functional imaging. However, achieving high-speed imaging with high spatial resolution remains challenging. To address this, undersampling and deep learning have emerged as common techniques to enhance imaging speed. Yet, existing methods rarely achieve effective recovery of functional images. In this study, we propose Mask-enhanced U-net (MeU-net) for recovering sparsely sampled PAM structural and functional images. The model utilizes dual-channel input, processing photoacoustic data from 532 nm and 558 nm wavelengths. Additionally, we introduce an adaptive vascular attention mask module that focuses on vascular information recovery and design a vessel-specific loss function to enhance restoration accuracy. We simulate data from mouse brain and ear imaging under various levels of sparsity (4 ×, 8 ×, 12 ×) and conduct extensive experiments. The results demonstrate that MeU-net significantly outperforms traditional interpolation methods and other representative models in structural information and oxygen saturation recovery.
光声显微镜(PAM)利用光声效应来提供高分辨率的结构和功能成像。然而,实现具有高空间分辨率的高速成像仍然具有挑战性。为了解决这个问题,欠采样和深度学习已成为提高成像速度的常用技术。然而,现有方法很少能有效地恢复功能图像。在本研究中,我们提出了掩码增强U-net(MeU-net)来恢复稀疏采样的PAM结构和功能图像。该模型利用双通道输入,处理来自532nm和558nm波长的光声数据。此外,我们引入了一个自适应血管注意力掩码模块,专注于血管信息恢复,并设计了一个特定于血管的损失函数来提高恢复精度。我们模拟了不同稀疏度(4倍、8倍、12倍)下小鼠大脑和耳朵成像的数据,并进行了广泛的实验。结果表明,MeU-net在结构信息和氧饱和度恢复方面显著优于传统插值方法和其他代表性模型。