Department of Biological Sciences, Faculty of Science, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait.
Department of Biological Sciences, Faculty of Science, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait.
J Environ Manage. 2015 May 15;155:49-57. doi: 10.1016/j.jenvman.2015.03.010. Epub 2015 Mar 12.
Olive-pomace, a waste by-product of olive oil industry, took up >40% of its weight crude oil. Meanwhile, this material harbored a rich and diverse hydrocarbonoclastic bacterial population in the magnitude of 10(6) to 10(7) cells g(-1). Using this material for bioaugmentation of batch cultures in crude oil-containing mineral medium, resulted in the consumption of 12.9, 21.5, 28.3, and 43% oil after 2, 4, 6 and 8 months, respectively. Similar oil-consumption values, namely 11.0, 29.3, 34.7 and 43.9%, respectively, were recorded when a NaNO3-free medium was used instead of the complete medium. Hydrocarbonoclastic bacteria involved in those bioremediation processes, as characterized by their 16S rRNA-gene sequences, belonged to the genera Agrococcus, Pseudomonas, Cellulosimicrobium, Streptococcus, Sinorhizobium, Olivibacter, Ochrobactrum, Rhizobium, Pleomorphomonas, Azoarcus, Starkeya and others. Many of the bacterial species belonging to those genera were diazotrophic; they proved to contain the nifH-genes in their genomes. Still other bacterial species could tolerate the heavy metal mercury. The dynamic changes of the proportions of various species during 8 months of incubation were recorded. The culture-independent, phylogenetic analysis of the bacterioflora gave lists different from those recorded by the culture-dependent method. Nevertheless, those lists comprised among others, several genera known for their hydrocarbonoclastic potential, e.g. Pseudomonas, Mycobacterium, Sphingobium, and Citrobacter. It was concluded that olive-pomace could be applied in oil-remediation, not only as a physical sorbent, but also for bioaugmentation purposes as a biological source of hydrocarbonoclastic bacteria.
橄榄渣是橄榄油工业的一种副产物,占其粗油重量的>40%。同时,这种材料中蕴藏着丰富多样的烃类降解细菌种群,数量达到 10(6)到 10(7)细胞/g(-1)。在含有原油的矿物培养基中,使用这种材料进行批处理培养的生物增强,分别在 2、4、6 和 8 个月后,导致油的消耗分别为 12.9、21.5、28.3 和 43%。当使用不含 NaNO3 的培养基代替完全培养基时,记录到类似的油消耗值,分别为 11.0、29.3、34.7 和 43.9%。参与那些生物修复过程的烃类降解细菌,根据其 16S rRNA 基因序列的特征,属于 Agrococcus、Pseudomonas、Cellulosimicrobium、Streptococcus、Sinorhizobium、Olivibacter、Ochrobactrum、Rhizobium、Pleomorphomonas、Azoarcus、Starkeya 等属。属于这些属的许多细菌物种是固氮的;它们被证明在其基因组中含有 nifH 基因。还有一些细菌物种能够耐受重金属汞。在 8 个月的培养过程中,记录了各种物种比例的动态变化。细菌菌群的非培养、系统发育分析给出了与培养依赖方法记录的不同列表。然而,这些列表包括了一些以其烃类降解潜力而闻名的属,例如 Pseudomonas、Mycobacterium、Sphingobium 和 Citrobacter。结论是,橄榄渣不仅可以作为物理吸附剂应用于石油修复,还可以作为生物增强的生物来源,用于烃类降解细菌。