Zhao Yongqian, Soh Tingjin Sherryl, Zheng Jie, Chan Kitti Wing Ki, Phoo Wint Wint, Lee Chin Chin, Tay Moon Y F, Swaminathan Kunchithapadam, Cornvik Tobias C, Lim Siew Pheng, Shi Pei-Yong, Lescar Julien, Vasudevan Subhash G, Luo Dahai
Program in Emerging Infectious Diseases, DUKE-NUS Graduate Medical School, Singapore; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore.
School of Biological Sciences, Nanyang Technological University, Singapore; Novartis Institute for Tropical Diseases, Singapore.
PLoS Pathog. 2015 Mar 16;11(3):e1004682. doi: 10.1371/journal.ppat.1004682. eCollection 2015 Mar.
Flavivirus RNA replication occurs within a replication complex (RC) that assembles on ER membranes and comprises both non-structural (NS) viral proteins and host cofactors. As the largest protein component within the flavivirus RC, NS5 plays key enzymatic roles through its N-terminal methyltransferase (MTase) and C-terminal RNA-dependent-RNA polymerase (RdRp) domains, and constitutes a major target for antivirals. We determined a crystal structure of the full-length NS5 protein from Dengue virus serotype 3 (DENV3) at a resolution of 2.3 Å in the presence of bound SAH and GTP. Although the overall molecular shape of NS5 from DENV3 resembles that of NS5 from Japanese Encephalitis Virus (JEV), the relative orientation between the MTase and RdRp domains differs between the two structures, providing direct evidence for the existence of a set of discrete stable molecular conformations that may be required for its function. While the inter-domain region is mostly disordered in NS5 from JEV, the NS5 structure from DENV3 reveals a well-ordered linker region comprising a short 310 helix that may act as a swivel. Solution Hydrogen/Deuterium Exchange Mass Spectrometry (HDX-MS) analysis reveals an increased mobility of the thumb subdomain of RdRp in the context of the full length NS5 protein which correlates well with the analysis of the crystallographic temperature factors. Site-directed mutagenesis targeting the mostly polar interface between the MTase and RdRp domains identified several evolutionarily conserved residues that are important for viral replication, suggesting that inter-domain cross-talk in NS5 regulates virus replication. Collectively, a picture for the molecular origin of NS5 flexibility is emerging with profound implications for flavivirus replication and for the development of therapeutics targeting NS5.
黄病毒RNA复制发生在一个复制复合体(RC)内,该复合体组装在内质网(ER)膜上,由非结构(NS)病毒蛋白和宿主辅助因子组成。作为黄病毒RC中最大的蛋白质成分,NS5通过其N端甲基转移酶(MTase)和C端RNA依赖的RNA聚合酶(RdRp)结构域发挥关键酶作用,并构成抗病毒药物的主要靶点。我们在结合有S-腺苷高半胱氨酸(SAH)和鸟苷三磷酸(GTP)的情况下,以2.3 Å的分辨率测定了登革热病毒3型(DENV3)全长NS5蛋白的晶体结构。尽管DENV3的NS5的整体分子形状类似于日本脑炎病毒(JEV)的NS5,但MTase和RdRp结构域之间的相对取向在这两种结构中有所不同,这为其功能可能需要的一组离散稳定分子构象的存在提供了直接证据。虽然JEV NS5中的结构域间区域大多无序,但DENV3的NS5结构揭示了一个有序的连接区域,该区域包含一个可能起旋转作用的短310螺旋。溶液氢/氘交换质谱(HDX-MS)分析表明,在全长NS5蛋白的背景下,RdRp的拇指亚结构域的流动性增加,这与晶体学温度因子的分析结果高度相关。针对MTase和RdRp结构域之间大多为极性的界面进行的定点诱变鉴定出了几个对病毒复制很重要的进化保守残基,这表明NS5中的结构域间相互作用调节病毒复制。总的来说,NS5灵活性的分子起源图景正在浮现,这对黄病毒复制以及针对NS5的治疗方法的开发具有深远意义。