Suppr超能文献

使用生成对抗网络从磁共振图像生成合成CT图像。

Generating synthetic CTs from magnetic resonance images using generative adversarial networks.

作者信息

Emami Hajar, Dong Ming, Nejad-Davarani Siamak P, Glide-Hurst Carri K

机构信息

Department of Computer Science, Wayne State University, Detroit, MI, 48202, USA.

Department of Radiation Oncology, Henry Ford Health System, Detroit, MI, 48202, USA.

出版信息

Med Phys. 2018 Jun 14. doi: 10.1002/mp.13047.

Abstract

PURPOSE

While MR-only treatment planning using synthetic CTs (synCTs) offers potential for streamlining clinical workflow, a need exists for an efficient and automated synCT generation in the brain to facilitate near real-time MR-only planning. This work describes a novel method for generating brain synCTs based on generative adversarial networks (GANs), a deep learning model that trains two competing networks simultaneously, and compares it to a deep convolutional neural network (CNN).

METHODS

Post-Gadolinium T1-Weighted and CT-SIM images from fifteen brain cancer patients were retrospectively analyzed. The GAN model was developed to generate synCTs using T1-weighted MRI images as the input using a residual network (ResNet) as the generator. The discriminator is a CNN with five convolutional layers that classified the input image as real or synthetic. Fivefold cross-validation was performed to validate our model. GAN performance was compared to CNN based on mean absolute error (MAE), structural similarity index (SSIM), and peak signal-to-noise ratio (PSNR) metrics between the synCT and CT images.

RESULTS

GAN training took ~11 h with a new case testing time of 5.7 ± 0.6 s. For GAN, MAEs between synCT and CT-SIM were 89.3 ± 10.3 Hounsfield units (HU) and 41.9 ± 8.6 HU across the entire FOV and tissues, respectively. However, MAE in the bone and air was, on average, ~240-255 HU. By comparison, the CNN model had an average full FOV MAE of 102.4 ± 11.1 HU. For GAN, the mean PSNR was 26.6 ± 1.2 and SSIM was 0.83 ± 0.03. GAN synCTs preserved details better than CNN, and regions of abnormal anatomy were well represented on GAN synCTs.

CONCLUSIONS

We developed and validated a GAN model using a single T1-weighted MR image as the input that generates robust, high quality synCTs in seconds. Our method offers strong potential for supporting near real-time MR-only treatment planning in the brain.

摘要

目的

虽然使用合成CT(synCT)进行仅基于磁共振成像(MR)的治疗计划为简化临床工作流程提供了可能,但仍需要一种在脑部高效自动生成synCT的方法,以促进近乎实时的仅基于MR的计划制定。这项工作描述了一种基于生成对抗网络(GAN)生成脑部synCT的新方法,GAN是一种同时训练两个相互竞争网络的深度学习模型,并将其与深度卷积神经网络(CNN)进行比较。

方法

回顾性分析了15例脑癌患者的钆增强T1加权和CT模拟图像。GAN模型被开发用于以T1加权MRI图像作为输入,使用残差网络(ResNet)作为生成器来生成synCT。判别器是一个具有五个卷积层的CNN,用于将输入图像分类为真实图像或合成图像。进行了五折交叉验证以验证我们的模型。基于synCT和CT图像之间的平均绝对误差(MAE)、结构相似性指数(SSIM)和峰值信噪比(PSNR)指标,将GAN的性能与CNN进行比较。

结果

GAN训练耗时约11小时,新病例测试时间为5.7±0.6秒。对于GAN,在整个视野(FOV)和组织中,synCT与CT模拟之间的MAE分别为89.3±10.3亨氏单位(HU)和41.9±8.6 HU。然而,骨骼和空气区域的MAE平均约为240 - 255 HU。相比之下,CNN模型的全视野平均MAE为102.4±11.1 HU。对于GAN,平均PSNR为26.6±1.2,SSIM为0.83±0.03。GAN synCT比CNN能更好地保留细节,并且在GAN synCT上能很好地呈现异常解剖区域。

结论

我们开发并验证了一种以单个T1加权MR图像作为输入的GAN模型,该模型能在数秒内生成稳健、高质量的synCT。我们的方法为支持脑部近乎实时的仅基于MR的治疗计划提供了强大的潜力。

相似文献

3
Attention-Guided Generative Adversarial Network to Address Atypical Anatomy in Synthetic CT Generation.注意力引导生成对抗网络在合成CT生成中解决非典型解剖问题。
2020 IEEE 21st Int Conf Inf Reuse Integr Data Sci (2020). 2020 Aug;2020:188-193. doi: 10.1109/iri49571.2020.00034. Epub 2020 Sep 10.

引用本文的文献

7
CT synthesis with deep learning for MR-only radiotherapy planning: a review.基于深度学习的CT合成用于仅磁共振放疗计划:综述
Biomed Eng Lett. 2024 Sep 26;14(6):1259-1278. doi: 10.1007/s13534-024-00430-y. eCollection 2024 Nov.

本文引用的文献

1
Medical Image Synthesis with Context-Aware Generative Adversarial Networks.基于上下文感知生成对抗网络的医学图像合成
Med Image Comput Comput Assist Interv. 2017 Sep;10435:417-425. doi: 10.1007/978-3-319-66179-7_48. Epub 2017 Sep 4.
8
Population based ranking of frameless CT-MRI registration methods.基于人群的无框架CT-MRI配准方法排名
Z Med Phys. 2015 Dec;25(4):353-367. doi: 10.1016/j.zemedi.2015.07.001. Epub 2015 Aug 14.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验