Suppr超能文献

基于深度学习的头颈部骨 MRI 合成 CT

Deep Learning for Synthetic CT from Bone MRI in the Head and Neck.

机构信息

From the Abigail Wexner Research Institute at Nationwide Children's Hospital (S.B.), Columbus, Ohio.

Department of Radiology (M.-L.H.), Nationwide Children's Hospital, Columbus, Ohio.

出版信息

AJNR Am J Neuroradiol. 2022 Aug;43(8):1172-1179. doi: 10.3174/ajnr.A7588.

Abstract

BACKGROUND AND PURPOSE

Bone MR imaging techniques enable visualization of cortical bone without the need for ionizing radiation. Automated conversion of bone MR imaging to synthetic CT is highly desirable for downstream image processing and eventual clinical adoption. Given the complex anatomy and pathology of the head and neck, deep learning models are ideally suited for learning such mapping.

MATERIALS AND METHODS

This was a retrospective study of 39 pediatric and adult patients with bone MR imaging and CT examinations of the head and neck. For each patient, MR imaging and CT data sets were spatially coregistered using multiple-point affine transformation. Paired MR imaging and CT slices were generated for model training, using 4-fold cross-validation. We trained 3 different encoder-decoder models: Light_U-Net (2 million parameters) and VGG-16 U-Net (29 million parameters) without and with transfer learning. Loss functions included mean absolute error, mean squared error, and a weighted average. Performance metrics included Pearson , mean absolute error, mean squared error, bone precision, and bone recall. We investigated model generalizability by training and validating across different conditions.

RESULTS

The Light_U-Net architecture quantitatively outperformed VGG-16 models. Mean absolute error loss resulted in higher bone precision, while mean squared error yielded higher bone recall. Performance metrics decreased when using training data captured only in a different environment but increased when local training data were augmented with those from different hospitals, vendors, or MR imaging techniques.

CONCLUSIONS

We have optimized a robust deep learning model for conversion of bone MR imaging to synthetic CT, which shows good performance and generalizability when trained on different hospitals, vendors, and MR imaging techniques. This approach shows promise for facilitating downstream image processing and adoption into clinical practice.

摘要

背景与目的

骨磁共振成像技术能够在无需电离辐射的情况下对皮质骨进行可视化。将骨磁共振成像自动转换为合成 CT 对于下游图像处理和最终的临床应用是非常理想的。鉴于头颈部的复杂解剖结构和病理学,深度学习模型非常适合学习这种映射。

材料与方法

这是一项回顾性研究,共纳入 39 例接受头颈部骨磁共振成像和 CT 检查的儿科和成年患者。对于每位患者,使用多点仿射变换对头颈部的磁共振成像和 CT 数据集进行空间配准。使用 4 折交叉验证生成配对的磁共振成像和 CT 切片,用于模型训练。我们训练了 3 种不同的编码器-解码器模型:Light_U-Net(200 万个参数)和 VGG-16 U-Net(2900 万个参数),包括有无迁移学习。损失函数包括均方误差、平均绝对误差和加权平均。性能指标包括 Pearson 、平均绝对误差、平均平方误差、骨精度和骨召回率。我们通过在不同条件下进行训练和验证来研究模型的泛化能力。

结果

Light_U-Net 架构在定量方面优于 VGG-16 模型。平均绝对误差损失导致更高的骨精度,而平均平方误差则产生更高的骨召回率。当仅使用在不同环境中捕获的训练数据时,性能指标会降低,但当使用来自不同医院、供应商或磁共振成像技术的本地训练数据进行扩充时,性能指标会增加。

结论

我们已经优化了一种用于将骨磁共振成像转换为合成 CT 的强大深度学习模型,该模型在使用不同医院、供应商和磁共振成像技术进行训练时具有良好的性能和泛化能力。这种方法有望促进下游图像处理和临床应用。

相似文献

引用本文的文献

6
Machine Learning for Medical Image Translation: A Systematic Review.用于医学图像翻译的机器学习:系统综述。
Bioengineering (Basel). 2023 Sep 12;10(9):1078. doi: 10.3390/bioengineering10091078.

本文引用的文献

2
Ultrashort Echo-Time MR Imaging of the Pediatric Head and Neck.儿科头颈部超短回波时间磁共振成像。
Magn Reson Imaging Clin N Am. 2021 Nov;29(4):583-593. doi: 10.1016/j.mric.2021.06.008.
8
Zero TE MRI for Craniofacial Bone Imaging.颅颌面骨成像的零切变磁共振成像。
AJNR Am J Neuroradiol. 2019 Sep;40(9):1562-1566. doi: 10.3174/ajnr.A6175.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验