Suppr超能文献

γ波段振荡抑制对动作电位时间的细胞类型特异性控制

Cell Type-Specific Control of Spike Timing by Gamma-Band Oscillatory Inhibition.

作者信息

Hasenstaub Andrea, Otte Stephani, Callaway Edward

机构信息

Crick-Jacobs Center for Theoretical and Computational Biology, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.

出版信息

Cereb Cortex. 2016 Feb;26(2):797-806. doi: 10.1093/cercor/bhv044. Epub 2015 Mar 16.

Abstract

Many lines of theoretical and experimental investigation have suggested that gamma oscillations provide a temporal framework for cortical information processing, acting to either synchronize neuronal firing, restrict neuron's relative spike times, and/or provide a global reference signal to which neurons encode input strength. Each theory has been disputed and some believe that gamma is an epiphenomenon. We investigated the biophysical plausibility of these theories by performing in vitro whole-cell recordings from 6 cortical neuron subtypes and examining how gamma-band and slow fluctuations in injected input affect precision and phase of spike timing. We find that gamma is at least partially able to restrict the spike timing in all subtypes tested, but to varying degrees. Gamma exerts more precise control of spike timing in pyramidal neurons involved in cortico-cortical versus cortico-subcortical communication and in inhibitory neurons that target somatic versus dendritic compartments. We also find that relatively few subtypes are capable of phase-based information coding. Using simple neuron models and dynamic clamp, we determine which intrinsic differences lead to these variations in responsiveness and discuss both the flexibility and confounds of gamma-based spike-timing systems.

摘要

许多理论和实验研究表明,γ振荡为皮层信息处理提供了一个时间框架,其作用是使神经元放电同步、限制神经元的相对放电时间,和/或提供一个神经元编码输入强度所依据的全局参考信号。每种理论都存在争议,一些人认为γ是一种副现象。我们通过对6种皮层神经元亚型进行体外全细胞记录,并研究注入输入中的γ波段和缓慢波动如何影响放电时间的精度和相位,来探究这些理论在生物物理学上的合理性。我们发现,γ至少在一定程度上能够限制所有测试亚型的放电时间,但程度各不相同。γ对参与皮层-皮层与皮层-皮层下通信的锥体神经元以及针对胞体与树突区室的抑制性神经元的放电时间施加更精确的控制。我们还发现,能够进行基于相位的信息编码的亚型相对较少。通过使用简单的神经元模型和动态钳,我们确定了哪些内在差异导致了这些反应性的变化,并讨论了基于γ的放电时间系统的灵活性和混淆因素。

相似文献

1
Cell Type-Specific Control of Spike Timing by Gamma-Band Oscillatory Inhibition.
Cereb Cortex. 2016 Feb;26(2):797-806. doi: 10.1093/cercor/bhv044. Epub 2015 Mar 16.
2
Active dendritic conductances dynamically regulate GABA release from thalamic interneurons.
Neuron. 2008 Feb 7;57(3):420-31. doi: 10.1016/j.neuron.2007.12.022.
3
Membrane potential dynamics of GABAergic neurons in the barrel cortex of behaving mice.
Neuron. 2010 Feb 11;65(3):422-35. doi: 10.1016/j.neuron.2010.01.006.
4
Distinct Inhibitory Circuits Orchestrate Cortical beta and gamma Band Oscillations.
Neuron. 2017 Dec 20;96(6):1403-1418.e6. doi: 10.1016/j.neuron.2017.11.033.
6
Inhibition and synchronization of basal amygdala principal neuron spiking by parvalbumin-positive interneurons.
J Neurophysiol. 2007 Nov;98(5):2956-61. doi: 10.1152/jn.00739.2007. Epub 2007 Aug 22.
8
Reliable control of spike rate and spike timing by rapid input transients in cerebellar stellate cells.
Neuroscience. 2004;124(2):305-17. doi: 10.1016/j.neuroscience.2003.11.015.
9
Rhythm-induced spike-timing patterns characterized by 1D firing maps.
J Comput Neurosci. 2013 Feb;34(1):59-71. doi: 10.1007/s10827-012-0406-8. Epub 2012 Jul 22.
10
Temporally precise control of single-neuron spiking by juxtacellular nanostimulation.
J Neurophysiol. 2017 Mar 1;117(3):1363-1378. doi: 10.1152/jn.00479.2016. Epub 2017 Jan 11.

引用本文的文献

2
Cortical VIP neurons locally control the gain but globally control the coherence of gamma band rhythms.
Neuron. 2023 Feb 1;111(3):405-417.e5. doi: 10.1016/j.neuron.2022.10.036. Epub 2022 Nov 15.
3
Adaptive control of synaptic plasticity integrates micro- and macroscopic network function.
Neuropsychopharmacology. 2023 Jan;48(1):121-144. doi: 10.1038/s41386-022-01374-6. Epub 2022 Aug 29.
5
Dynamic Suppression of Average Facial Structure Shapes Neural Tuning in Three Macaque Face Patches.
Curr Biol. 2021 Jan 11;31(1):1-12.e5. doi: 10.1016/j.cub.2020.09.070. Epub 2020 Oct 15.
6
Firing rate models for gamma oscillations.
J Neurophysiol. 2019 Jun 1;121(6):2181-2190. doi: 10.1152/jn.00741.2018. Epub 2019 Apr 3.
7
Ten-Hour Exposure to Low-Dose Ketamine Enhances Corticostriatal Cross-Frequency Coupling and Hippocampal Broad-Band Gamma Oscillations.
Front Neural Circuits. 2018 Aug 13;12:61. doi: 10.3389/fncir.2018.00061. eCollection 2018.
8
Amplitude modulation coding in awake mice and squirrel monkeys.
J Neurophysiol. 2018 May 1;119(5):1753-1766. doi: 10.1152/jn.00101.2017. Epub 2018 Jan 24.
9
Layer-specific excitation/inhibition balances during neuronal synchronization in the visual cortex.
J Physiol. 2018 May 1;596(9):1639-1657. doi: 10.1113/JP274986. Epub 2018 Jan 24.
10
On the Phase Relationship between Excitatory and Inhibitory Neurons in Oscillation.
Front Comput Neurosci. 2016 Dec 26;10:138. doi: 10.3389/fncom.2016.00138. eCollection 2016.

本文引用的文献

1
Cortical parvalbumin interneurons and cognitive dysfunction in schizophrenia.
Trends Neurosci. 2012 Jan;35(1):57-67. doi: 10.1016/j.tins.2011.10.004. Epub 2011 Dec 6.
2
Early γ oscillations synchronize developing thalamus and cortex.
Science. 2011 Oct 14;334(6053):226-9. doi: 10.1126/science.1210574.
3
Orientation selectivity of synaptic input to neurons in mouse and cat primary visual cortex.
J Neurosci. 2011 Aug 24;31(34):12339-50. doi: 10.1523/JNEUROSCI.2039-11.2011.
4
Mechanisms for Phase Shifting in Cortical Networks and their Role in Communication through Coherence.
Front Hum Neurosci. 2010 Nov 2;4:196. doi: 10.3389/fnhum.2010.00196. eCollection 2010.
5
Oscillations and filtering networks support flexible routing of information.
Neuron. 2010 Jul 29;67(2):308-20. doi: 10.1016/j.neuron.2010.06.019.
6
Cell type-specific control of neuronal responsiveness by gamma-band oscillatory inhibition.
J Neurosci. 2010 Feb 10;30(6):2150-9. doi: 10.1523/JNEUROSCI.4818-09.2010.
7
Gamma-phase shifting in awake monkey visual cortex.
J Neurosci. 2010 Jan 27;30(4):1250-7. doi: 10.1523/JNEUROSCI.1623-09.2010.
8
Oscillations, phase-of-firing coding, and spike timing-dependent plasticity: an efficient learning scheme.
J Neurosci. 2009 Oct 28;29(43):13484-93. doi: 10.1523/JNEUROSCI.2207-09.2009.
9
Rapid neocortical dynamics: cellular and network mechanisms.
Neuron. 2009 Apr 30;62(2):171-89. doi: 10.1016/j.neuron.2009.04.008.
10
Neuronal gamma-band synchronization as a fundamental process in cortical computation.
Annu Rev Neurosci. 2009;32:209-24. doi: 10.1146/annurev.neuro.051508.135603.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验