Hasenstaub Andrea, Otte Stephani, Callaway Edward
Crick-Jacobs Center for Theoretical and Computational Biology, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
Cereb Cortex. 2016 Feb;26(2):797-806. doi: 10.1093/cercor/bhv044. Epub 2015 Mar 16.
Many lines of theoretical and experimental investigation have suggested that gamma oscillations provide a temporal framework for cortical information processing, acting to either synchronize neuronal firing, restrict neuron's relative spike times, and/or provide a global reference signal to which neurons encode input strength. Each theory has been disputed and some believe that gamma is an epiphenomenon. We investigated the biophysical plausibility of these theories by performing in vitro whole-cell recordings from 6 cortical neuron subtypes and examining how gamma-band and slow fluctuations in injected input affect precision and phase of spike timing. We find that gamma is at least partially able to restrict the spike timing in all subtypes tested, but to varying degrees. Gamma exerts more precise control of spike timing in pyramidal neurons involved in cortico-cortical versus cortico-subcortical communication and in inhibitory neurons that target somatic versus dendritic compartments. We also find that relatively few subtypes are capable of phase-based information coding. Using simple neuron models and dynamic clamp, we determine which intrinsic differences lead to these variations in responsiveness and discuss both the flexibility and confounds of gamma-based spike-timing systems.
许多理论和实验研究表明,γ振荡为皮层信息处理提供了一个时间框架,其作用是使神经元放电同步、限制神经元的相对放电时间,和/或提供一个神经元编码输入强度所依据的全局参考信号。每种理论都存在争议,一些人认为γ是一种副现象。我们通过对6种皮层神经元亚型进行体外全细胞记录,并研究注入输入中的γ波段和缓慢波动如何影响放电时间的精度和相位,来探究这些理论在生物物理学上的合理性。我们发现,γ至少在一定程度上能够限制所有测试亚型的放电时间,但程度各不相同。γ对参与皮层-皮层与皮层-皮层下通信的锥体神经元以及针对胞体与树突区室的抑制性神经元的放电时间施加更精确的控制。我们还发现,能够进行基于相位的信息编码的亚型相对较少。通过使用简单的神经元模型和动态钳,我们确定了哪些内在差异导致了这些反应性的变化,并讨论了基于γ的放电时间系统的灵活性和混淆因素。